Home
Random Article
Read on Wikipedia
Edit
History
Talk Page
Print
Download PDF
vi
31 other languages
Danh sách tích phân với hàm hypebolic
x
t
s
Danh sách tích phân
Hàm sơ cấp
Hàm hữu tỉ
Hàm vô tỉ
Hàm lượng giác
Hàm hypebolic
Hàm mũ
Hàm lôgarít
Hàm lượng giác ngược
Hàm hypebolic ngược
Dưới đây là
danh sách
tích phân
với
hàm hypebolic
.
∫
sinh
c
x
d
x
=
1
c
cosh
c
x
{\displaystyle \int \sinh cx\,dx={\frac {1}{c}\cosh cx}
∫
cosh
c
x
d
x
=
1
c
sinh
c
x
{\displaystyle \int \cosh cx\,dx={\frac {1}{c}\sinh cx}
∫
sinh
2
c
x
d
x
=
1
4
c
sinh
2
c
x
−
x
2
{\displaystyle \int \sinh ^{2}cx\,dx={\frac {1}{4c}\sinh 2cx-{\frac {x}{2}
∫
cosh
2
c
x
d
x
=
1
4
c
sinh
2
c
x
+
x
2
{\displaystyle \int \cosh ^{2}cx\,dx={\frac {1}{4c}\sinh 2cx+{\frac {x}{2}
∫
sinh
n
c
x
d
x
=
1
c
n
sinh
n
−
1
c
x
cosh
c
x
−
n
−
1
n
∫
sinh
n
−
2
c
x
d
x
(
n
>
0
)
{\displaystyle \int \sinh ^{n}cx\,dx={\frac {1}{cn}\sinh ^{n-1}cx\cosh cx-{\frac {n-1}{n}\int \sinh ^{n-2}cx\,dx\qquad {\mbox{(}n>0{\mbox{)}
hay:
∫
sinh
n
c
x
d
x
=
1
c
(
n
+
1
)
sinh
n
+
1
c
x
cosh
c
x
−
n
+
2
n
+
1
∫
sinh
n
+
2
c
x
d
x
(
n
<
0
,
n
≠
−
1
)
{\displaystyle \int \sinh ^{n}cx\,dx={\frac {1}{c(n+1)}\sinh ^{n+1}cx\cosh cx-{\frac {n+2}{n+1}\int \sinh ^{n+2}cx\,dx\qquad {\mbox{(}n<0{\mbox{, }n\neq -1{\mbox{)}
∫
cosh
n
c
x
d
x
=
1
c
n
sinh
c
x
cosh
n
−
1
c
x
+
n
−
1
n
∫
cosh
n
−
2
c
x
d
x
(
n
>
0
)
{\displaystyle \int \cosh ^{n}cx\,dx={\frac {1}{cn}\sinh cx\cosh ^{n-1}cx+{\frac {n-1}{n}\int \cosh ^{n-2}cx\,dx\qquad {\mbox{(}n>0{\mbox{)}
hay:
∫
cosh
n
c
x
d
x
=
−
1
c
(
n
+
1
)
sinh
c
x
cosh
n
+
1
c
x
−
n
+
2
n
+
1
∫
cosh
n
+
2
c
x
d
x
(
n
<
0
,
n
≠
−
1
)
{\displaystyle \int \cosh ^{n}cx\,dx=-{\frac {1}{c(n+1)}\sinh cx\cosh ^{n+1}cx-{\frac {n+2}{n+1}\int \cosh ^{n+2}cx\,dx\qquad {\mbox{(}n<0{\mbox{, }n\neq -1{\mbox{)}
∫
d
x
sinh
c
x
=
1
c
ln
|
tanh
c
x
2
|
{\displaystyle \int {\frac {dx}{\sinh cx}={\frac {1}{c}\ln \left|\tanh {\frac {cx}{2}\right|}
hay:
∫
d
x
sinh
c
x
=
1
c
ln
|
cosh
c
x
−
1
sinh
c
x
|
{\displaystyle \int {\frac {dx}{\sinh cx}={\frac {1}{c}\ln \left|{\frac {\cosh cx-1}{\sinh cx}\right|}
hay:
∫
d
x
sinh
c
x
=
1
c
ln
|
sinh
c
x
cosh
c
x
+
1
|
{\displaystyle \int {\frac {dx}{\sinh cx}={\frac {1}{c}\ln \left|{\frac {\sinh cx}{\cosh cx+1}\right|}
hay:
∫
d
x
sinh
c
x
=
1
c
ln
|
cosh
c
x
−
1
cosh
c
x
+
1
|
{\displaystyle \int {\frac {dx}{\sinh cx}={\frac {1}{c}\ln \left|{\frac {\cosh cx-1}{\cosh cx+1}\right|}
∫
d
x
cosh
c
x
=
2
c
arctan
e
c
x
{\displaystyle \int {\frac {dx}{\cosh cx}={\frac {2}{c}\arctan e^{cx}
∫
d
x
sinh
n
c
x
=
cosh
c
x
c
(
n
−
1
)
sinh
n
−
1
c
x
−
n
−
2
n
−
1
∫
d
x
sinh
n
−
2
c
x
(
n
≠
1
)
{\displaystyle \int {\frac {dx}{\sinh ^{n}cx}={\frac {\cosh cx}{c(n-1)\sinh ^{n-1}cx}-{\frac {n-2}{n-1}\int {\frac {dx}{\sinh ^{n-2}cx}\qquad {\mbox{(}n\neq 1{\mbox{)}
∫
d
x
cosh
n
c
x
=
sinh
c
x
c
(
n
−
1
)
cosh
n
−
1
c
x
+
n
−
2
n
−
1
∫
d
x
cosh
n
−
2
c
x
(
n
≠
1
)
{\displaystyle \int {\frac {dx}{\cosh ^{n}cx}={\frac {\sinh cx}{c(n-1)\cosh ^{n-1}cx}+{\frac {n-2}{n-1}\int {\frac {dx}{\cosh ^{n-2}cx}\qquad {\mbox{(}n\neq 1{\mbox{)}
∫
cosh
n
c
x
sinh
m
c
x
d
x
=
cosh
n
−
1
c
x
c
(
n
−
m
)
sinh
m
−
1
c
x
+
n
−
1
n
−
m
∫
cosh
n
−
2
c
x
sinh
m
c
x
d
x
(
m
≠
n
)
{\displaystyle \int {\frac {\cosh ^{n}cx}{\sinh ^{m}cx}dx={\frac {\cosh ^{n-1}cx}{c(n-m)\sinh ^{m-1}cx}+{\frac {n-1}{n-m}\int {\frac {\cosh ^{n-2}cx}{\sinh ^{m}cx}dx\qquad {\mbox{(}m\neq n{\mbox{)}
hay:
∫
cosh
n
c
x
sinh
m
c
x
d
x
=
−
cosh
n
+
1
c
x
c
(
m
−
1
)
sinh
m
−
1
c
x
+
n
−
m
+
2
m
−
1
∫
cosh
n
c
x
sinh
m
−
2
c
x
d
x
(
m
≠
1
)
{\displaystyle \int {\frac {\cosh ^{n}cx}{\sinh ^{m}cx}dx=-{\frac {\cosh ^{n+1}cx}{c(m-1)\sinh ^{m-1}cx}+{\frac {n-m+2}{m-1}\int {\frac {\cosh ^{n}cx}{\sinh ^{m-2}cx}dx\qquad {\mbox{(}m\neq 1{\mbox{)}
hay:
∫
cosh
n
c
x
sinh
m
c
x
d
x
=
−
cosh
n
−
1
c
x
c
(
m
−
1
)
sinh
m
−
1
c
x
+
n
−
1
m
−
1
∫
cosh
n
−
2
c
x
sinh
m
−
2
c
x
d
x
(
m
≠
1
)
{\displaystyle \int {\frac {\cosh ^{n}cx}{\sinh ^{m}cx}dx=-{\frac {\cosh ^{n-1}cx}{c(m-1)\sinh ^{m-1}cx}+{\frac {n-1}{m-1}\int {\frac {\cosh ^{n-2}cx}{\sinh ^{m-2}cx}dx\qquad {\mbox{(}m\neq 1{\mbox{)}
∫
sinh
m
c
x
cosh
n
c
x
d
x
=
sinh
m
−
1
c
x
c
(
m
−
n
)
cosh
n
−
1
c
x
+
m
−
1
m
−
n
∫
sinh
m
−
2
c
x
cosh
n
c
x
d
x
(
m
≠
n
)
{\displaystyle \int {\frac {\sinh ^{m}cx}{\cosh ^{n}cx}dx={\frac {\sinh ^{m-1}cx}{c(m-n)\cosh ^{n-1}cx}+{\frac {m-1}{m-n}\int {\frac {\sinh ^{m-2}cx}{\cosh ^{n}cx}dx\qquad {\mbox{(}m\neq n{\mbox{)}
hay:
∫
sinh
m
c
x
cosh
n
c
x
d
x
=
sinh
m
+
1
c
x
c
(
n
−
1
)
cosh
n
−
1
c
x
+
m
−
n
+
2
n
−
1
∫
sinh
m
c
x
cosh
n
−
2
c
x
d
x
(
n
≠
1
)
{\displaystyle \int {\frac {\sinh ^{m}cx}{\cosh ^{n}cx}dx={\frac {\sinh ^{m+1}cx}{c(n-1)\cosh ^{n-1}cx}+{\frac {m-n+2}{n-1}\int {\frac {\sinh ^{m}cx}{\cosh ^{n-2}cx}dx\qquad {\mbox{(}n\neq 1{\mbox{)}
hay:
∫
sinh
m
c
x
cosh
n
c
x
d
x
=
−
sinh
m
−
1
c
x
c
(
n
−
1
)
cosh
n
−
1
c
x
+
m
−
1
n
−
1
∫
sinh
m
−
2
c
x
cosh
n
−
2
c
x
d
x
(
n
≠
1
)
{\displaystyle \int {\frac {\sinh ^{m}cx}{\cosh ^{n}cx}dx=-{\frac {\sinh ^{m-1}cx}{c(n-1)\cosh ^{n-1}cx}+{\frac {m-1}{n-1}\int {\frac {\sinh ^{m-2}cx}{\cosh ^{n-2}cx}dx\qquad {\mbox{(}n\neq 1{\mbox{)}
∫
x
sinh
c
x
d
x
=
1
c
x
cosh
c
x
−
1
c
2
sinh
c
x
{\displaystyle \int x\sinh cx\,dx={\frac {1}{c}x\cosh cx-{\frac {1}{c^{2}\sinh cx}
∫
x
cosh
c
x
d
x
=
1
c
x
sinh
c
x
−
1
c
2
cosh
c
x
{\displaystyle \int x\cosh cx\,dx={\frac {1}{c}x\sinh cx-{\frac {1}{c^{2}\cosh cx}
∫
tanh
c
x
d
x
=
1
c
ln
|
cosh
c
x
|
{\displaystyle \int \tanh cx\,dx={\frac {1}{c}\ln |\cosh cx|}
∫
coth
c
x
d
x
=
1
c
ln
|
sinh
c
x
|
{\displaystyle \int \coth cx\,dx={\frac {1}{c}\ln |\sinh cx|}
∫
tanh
n
c
x
d
x
=
−
1
c
(
n
−
1
)
tanh
n
−
1
c
x
+
∫
tanh
n
−
2
c
x
d
x
(
n
≠
1
)
{\displaystyle \int \tanh ^{n}cx\,dx=-{\frac {1}{c(n-1)}\tanh ^{n-1}cx+\int \tanh ^{n-2}cx\,dx\qquad {\mbox{(}n\neq 1{\mbox{)}
∫
coth
n
c
x
d
x
=
−
1
c
(
n
−
1
)
coth
n
−
1
c
x
+
∫
coth
n
−
2
c
x
d
x
(
n
≠
1
)
{\displaystyle \int \coth ^{n}cx\,dx=-{\frac {1}{c(n-1)}\coth ^{n-1}cx+\int \coth ^{n-2}cx\,dx\qquad {\mbox{(}n\neq 1{\mbox{)}
∫
sinh
b
x
sinh
c
x
d
x
=
1
b
2
−
c
2
(
b
sinh
c
x
cosh
b
x
−
c
cosh
c
x
sinh
b
x
)
(
b
2
≠
c
2
)
{\displaystyle \int \sinh bx\sinh cx\,dx={\frac {1}{b^{2}-c^{2}(b\sinh cx\cosh bx-c\cosh cx\sinh bx)\qquad {\mbox{(}b^{2}\neq c^{2}{\mbox{)}
∫
cosh
b
x
cosh
c
x
d
x
=
1
b
2
−
c
2
(
b
sinh
b
x
cosh
c
x
−
c
sinh
c
x
cosh
b
x
)
(
b
2
≠
c
2
)
{\displaystyle \int \cosh bx\cosh cx\,dx={\frac {1}{b^{2}-c^{2}(b\sinh bx\cosh cx-c\sinh cx\cosh bx)\qquad {\mbox{(}b^{2}\neq c^{2}{\mbox{)}
∫
cosh
b
x
sinh
c
x
d
x
=
1
b
2
−
c
2
(
b
sinh
b
x
sinh
c
x
−
c
cosh
b
x
cosh
c
x
)
(
b
2
≠
c
2
)
{\displaystyle \int \cosh bx\sinh cx\,dx={\frac {1}{b^{2}-c^{2}(b\sinh bx\sinh cx-c\cosh bx\cosh cx)\qquad {\mbox{(}b^{2}\neq c^{2}{\mbox{)}
∫
sinh
(
a
x
+
b
)
sin
(
c
x
+
d
)
d
x
=
a
a
2
+
c
2
cosh
(
a
x
+
b
)
sin
(
c
x
+
d
)
−
c
a
2
+
c
2
sinh
(
a
x
+
b
)
cos
(
c
x
+
d
)
{\displaystyle \int \sinh(ax+b)\sin(cx+d)\,dx={\frac {a}{a^{2}+c^{2}\cosh(ax+b)\sin(cx+d)-{\frac {c}{a^{2}+c^{2}\sinh(ax+b)\cos(cx+d)}
∫
sinh
(
a
x
+
b
)
cos
(
c
x
+
d
)
d
x
=
a
a
2
+
c
2
cosh
(
a
x
+
b
)
cos
(
c
x
+
d
)
+
c
a
2
+
c
2
sinh
(
a
x
+
b
)
sin
(
c
x
+
d
)
{\displaystyle \int \sinh(ax+b)\cos(cx+d)\,dx={\frac {a}{a^{2}+c^{2}\cosh(ax+b)\cos(cx+d)+{\frac {c}{a^{2}+c^{2}\sinh(ax+b)\sin(cx+d)}
∫
cosh
(
a
x
+
b
)
sin
(
c
x
+
d
)
d
x
=
a
a
2
+
c
2
sinh
(
a
x
+
b
)
sin
(
c
x
+
d
)
−
c
a
2
+
c
2
cosh
(
a
x
+
b
)
cos
(
c
x
+
d
)
{\displaystyle \int \cosh(ax+b)\sin(cx+d)\,dx={\frac {a}{a^{2}+c^{2}\sinh(ax+b)\sin(cx+d)-{\frac {c}{a^{2}+c^{2}\cosh(ax+b)\cos(cx+d)}
∫
cosh
(
a
x
+
b
)
cos
(
c
x
+
d
)
d
x
=
a
a
2
+
c
2
sinh
(
a
x
+
b
)
cos
(
c
x
+
d
)
+
c
a
2
+
c
2
cosh
(
a
x
+
b
)
sin
(
c
x
+
d
)
{\displaystyle \int \cosh(ax+b)\cos(cx+d)\,dx={\frac {a}{a^{2}+c^{2}\sinh(ax+b)\cos(cx+d)+{\frac {c}{a^{2}+c^{2}\cosh(ax+b)\sin(cx+d)}
Xem thêm
Danh sách tích phân
Tham khảo
Liên kết ngoài
Tính biểu thức tích phân