群论
|
|
群
|
无限维群
|
共形群 微分同胚群
环路群
量子群 O(∞) SU(∞) Sp(∞)
|
|
|
数学中,交错群(alternating group)是一个有限集合偶置换之群。集合 上的交错群称为 阶交错群,或 个字母上的交错群,记做 或 。
例如,4 阶交错群是 (参见轮换记法)。
基本性质
对 ,群是对称群 的交换子群,指数为 2,从而有个元素。它是符号群同态 的核。
群 是阿贝尔的当且仅当 ,是单群当且仅当 或 。注意 事实上是 3 阶单群。与 是 1 阶群,一般不称为单群的,而 有一个非平凡正规子群从而不是单群。是最小非阿贝尔单群,阶数为 60,也是最小不可解群。
共轭类
在对称群中, 的共轭类由有相同轮换型的元素组成。但是如果轮换类型只由没有两个长度相等的奇数长的轮换组成,这里长为 1 的轮换包含在轮换型中,则对这样的轮换型恰有两个共轭类 (Scott 1987,§11.1, p299)。
例如:
- 两个置换 (123) 与 (132) 有相同的轮换型从而在 S3 中共轭,但在 A3 中不共轭。
- 置换 (123)(45678) 与其逆 (132)(48765) 有相同的轮换型所以在 S8 中共轭,但在 A8 中不共轭。
自同构群
更多信息:对称群和交错群的自同构
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
对 n > 3,除了 n = 6,An 的自同构群就是 Sn 的自同构群,其内自同构群为 An 外自同构群为 Z2;外自同构来自用一个奇置换共轭。
对 n = 1 与 2,自同构群平凡。对 n = 3 自同构群是 Z2,其内自同构群平凡外自同构群为 Z2。
A6 的外自同构群是克莱因四元群 V = Z2 × Z2,这也是 S6 的自同构群。 A6 另外的自同构将三轮换(比如 (123))与 32 型元素(比如 (123)(456))交换。
特殊同构
在小交错群与小李型群之间有一些同构。他们是
- A4 同构于 PSL2(3) 以及手征性四面体对称之对称群。
- A5 同构于 PSL2(4),PSL2(5),以及手征性二十面体对称之对称群。
- A6 同构于 PSL2(9) 与 PSp4(2)'。
- A8 同构于 PSL4(2)。
更显然有 A3 同构于循环群 Z3,以及 A1 与 A2 同构于平凡群(也是 SL1(q)=PSL1(q) 对任何 q)。
子群
A4 是说明拉格朗日定理的逆命题一般不成立的最小群:给定一个有限群 G 和 |G| 的一个因子 d,不一定存在 G 的一个 d 阶子群。群 G = A4,阶为 12,没有 6 阶子群。有三个元素的子群(由三个对象的轮换旋转生成)再加上任何一个其它元素生成整个群。
群同调
交错群的群同调体现了类似稳定同伦理论中的稳定性:对足够大的 n 是常值。
H1:阿贝尔化
第一同调群与阿贝尔化相同,因为 除去已经提到的例外是完全群(完滿群),从而有
- for and
H2:舒尔乘子
当 n 等于 5 或大于等于 8 时,交错群 An 的舒尔乘子是 2 阶循环群;在 6 和 7 时有一个三重覆盖,则舒尔乘子的阶数为 6。
- for
- 对
- 对 與
参考文献