在雙縫實驗 裏,從光源
a
{\displaystyle \mathrm {a} }
傳播出來的相干光子束 ,照射在一塊刻有兩條狹縫
b
{\displaystyle \mathrm {b} }
和
c
{\displaystyle \mathrm {c} }
的不透明擋板
S
2
{\displaystyle \mathrm {S2} }
。在擋板的後面,擺設了攝影膠捲或某種偵測屏
F
{\displaystyle \mathrm {F} }
,用來紀錄到達
F
{\displaystyle \mathrm {F} }
的任何位置
d
{\displaystyle \mathrm {d} }
的光子數據。最右邊黑白相間的條紋,顯示出光子在偵測屏
F
{\displaystyle \mathrm {F} }
的干涉圖樣。
在量子力学 裏,态叠加 原理 (superposition principle)表明,假若一個量子系統的量子態 可以是幾種不同量子態中的任意一種,則它們的歸一化 線性組合 也可以是其量子態。稱這線性組合為「疊加態 」。假設組成疊加態的幾種量子態相互正交 ,則這量子系統處於其中任意量子態的機率 是對應權值 的絕對值平方。[1] :316ff
從數學 表述,态叠加原理是薛丁格方程式 的解所具有的性質。由於薛丁格方程式是個線性方程式 ,任意幾個解的線性組合 也是解。這些形成線性組合(稱為「疊加態」)的解時常會被設定為相互正交(稱為「基底態 」),例如氫原子 的電子 能級態 ;換句話說,這幾個基底態彼此之間不會出現重疊。這樣,對於疊加態測量任意可觀察量所得到的期望值 ,是對於每一個基底態測量同樣可觀察量所得到的期望值,乘以疊加態處於對應基底態的機率之後,所有乘積的總和。
更具體地說明,假設對於某量子系統測量可觀察量
A
{\displaystyle A}
,而可觀察量
A
{\displaystyle A}
的本徵態
|
a
1
⟩
{\displaystyle |a_{1}\rangle }
、
|
a
2
⟩
{\displaystyle |a_{2}\rangle }
分別擁有本徵值
a
1
{\displaystyle a_{1}
、
a
2
{\displaystyle a_{2}
,則根据薛定谔方程 的线性关系 ,疊加態
|
ψ
⟩
=
c
1
|
a
1
⟩
+
c
2
|
a
2
⟩
{\displaystyle |\psi \rangle =c_{1}|a_{1}\rangle +c_{2}|a_{2}\rangle }
也可以是這量子系統的量子態;其中,
c
1
{\displaystyle c_{1}
、
c
2
{\displaystyle c_{2}
分別為疊加態處於本徵態
|
a
1
⟩
{\displaystyle |a_{1}\rangle }
、
|
a
2
⟩
{\displaystyle |a_{2}\rangle }
的機率幅 。假設对這疊加態系統测量可观察量
A
{\displaystyle A}
,則測量獲得數值是
a
1
{\displaystyle a_{1}
或
a
2
{\displaystyle a_{2}
的機率分別為
|
c
1
|
2
{\displaystyle |c_{1}|^{2}
、
|
c
2
|
2
{\displaystyle |c_{2}|^{2}
,期望值 為
⟨
ψ
|
A
|
ψ
⟩
=
|
c
1
|
2
a
1
+
|
c
2
|
2
a
2
{\displaystyle \langle \psi |A|\psi \rangle =|c_{1}|^{2}a_{1}+|c_{2}|^{2}a_{2}
。
舉一個可直接觀察到量子疊加的實例,在雙縫實驗 裏,可以觀察到通過兩條狹縫的光子 相互干涉 ,造成了顯示於偵測屏障的明亮條紋和黑暗條紋,這就是雙縫實驗著名的干涉圖樣。
再舉一個案例,在量子運算 裏,量子位元 是的兩個基底態
|
0
⟩
{\displaystyle |0\rangle }
與
|
1
⟩
{\displaystyle |1\rangle }
的線性疊加。這兩個基底態
|
0
⟩
{\displaystyle |0\rangle }
、
|
1
⟩
{\displaystyle |1\rangle }
的本徵值分別為
0
{\displaystyle 0}
、
1
{\displaystyle 1}
。
理論
在數學裏,疊加原理 表明,線性方程式 的任意幾個解所組成的線性組合 也是這方程式的解。由於薛丁格方程式是線性方程式,疊加原理也適用於量子力學,在量子力學裏稱為態疊加原理。假設某量子系統的量子態可以是
|
f
1
⟩
{\displaystyle |f_{1}\rangle }
或
|
f
2
⟩
{\displaystyle |f_{2}\rangle }
,這些量子態都滿足描述這量子系統物理行為的薛丁格方程式。則這量子系的量子態也可以是它們的線性組合
|
f
⟩
=
c
1
|
f
1
⟩
+
c
2
|
f
2
⟩
{\displaystyle |f\rangle =c_{1}|f_{1}\rangle +c_{2}|f_{2}\rangle }
,也滿足同樣的薛丁格方程式;其中,
c
1
{\displaystyle c_{1}
、
c
2
{\displaystyle c_{2}
是複值係數,為了歸一化
|
f
⟩
{\displaystyle |f\rangle }
,必須讓
|
c
1
|
2
+
|
c
2
|
2
=
1
{\displaystyle |c_{1}|^{2}+|c_{2}|^{2}=1}
。
假設
θ
{\displaystyle \theta }
為實數,則雖然
e
i
θ
|
f
2
⟩
{\displaystyle e^{i\theta }|f_{2}\rangle }
與
|
f
2
⟩
{\displaystyle |f_{2}\rangle }
標記同樣的量子態,他們並無法相互替換。例如,
|
f
1
⟩
+
|
f
2
⟩
{\displaystyle |f_{1}\rangle +|f_{2}\rangle }
、
|
f
1
⟩
+
e
i
θ
|
f
2
⟩
{\displaystyle |f_{1}\rangle +e^{i\theta }|f_{2}\rangle }
分別標記兩種不同的量子態。但是,
|
f
1
⟩
+
|
f
2
⟩
{\displaystyle |f_{1}\rangle +|f_{2}\rangle }
和
e
i
θ
(
|
f
1
⟩
+
|
f
2
⟩
)
{\displaystyle e^{i\theta }(|f_{1}\rangle +|f_{2}\rangle )}
都標記同一個量子態。因此可以這樣說,整體的相位因子 並不具有物理意義,但相對的相位因子具有重要的物理意義。這種相位因子固定不變的量子疊加稱為「相干量子疊加」。[1] :317
電子自旋範例
設想自旋 為
1
/
2
{\displaystyle 1/2}
的電子 ,它擁有兩種相互正交的自旋本徵態,上旋態
|
↑
⟩
{\displaystyle |\uparrow \rangle }
與下旋態
|
↓
⟩
{\displaystyle |\downarrow \rangle }
,它們的量子疊加可以用來表示量子位元 :
|
ψ
⟩
=
c
↑
|
↑
⟩
+
c
↓
|
↓
⟩
{\displaystyle |\psi \rangle =c_{\uparrow }|\uparrow \rangle +c_{\downarrow }|\downarrow \rangle }
;
其中,
c
↑
{\displaystyle c_{\uparrow }
、
c
↓
{\displaystyle c_{\downarrow }
分別是複值係數,為了歸一化
|
ψ
⟩
{\displaystyle |\psi \rangle }
,必須讓
|
c
↑
|
2
+
|
c
↓
|
2
=
1
{\displaystyle |c_{\uparrow }|^{2}+|c_{\downarrow }|^{2}=1}
。
這是最一般的量子態。係數
c
↑
{\displaystyle c_{\uparrow }
、
c
↓
{\displaystyle c_{\downarrow }
分別給定電子處於上旋態或下旋態的機率:
p
↑
=
|
c
↑
|
2
{\displaystyle p_{\uparrow }=|c_{\uparrow }|^{2}
、
p
↓
=
|
c
↓
|
2
{\displaystyle p_{\downarrow }=|c_{\downarrow }|^{2}
。
總機率應該等於1:
p
=
p
↑
+
p
↓
=
|
c
↑
|
2
+
|
c
↓
|
2
=
1
{\displaystyle p=p_{\uparrow }+p_{\downarrow }=|c_{\uparrow }|^{2}+|c_{\downarrow }|^{2}=1}
。
這電子也可能處於這兩個量子態的疊加態:
|
ψ
⟩
=
3
i
5
|
↑
⟩
+
4
5
|
↓
⟩
{\displaystyle |\psi \rangle ={3i \over 5}|\uparrow \rangle +{4 \over 5}|\downarrow \rangle }
。
電子處於上旋態或下旋態的機率分別為
p
↑
=
|
3
i
5
|
2
=
9
25
{\displaystyle p_{\uparrow }=\left|\;{\frac {3i}{5}\;\right|^{2}={\frac {9}{25}
、
p
↓
=
|
4
5
|
2
=
16
25
{\displaystyle p_{\downarrow }=\left|\;{\frac {4}{5}\;\right|^{2}={\frac {16}{25}
。
再次注意到總機率應該等於1:
p
=
9
25
+
16
25
=
1
{\displaystyle p={\frac {9}{25}+{\frac {16}{25}=1}
。
非相對論性自由粒子案例
描述一個非相對論 性自由粒子的含時薛丁格方程式 為[1] :331-336
−
ℏ
2
2
m
∇
2
Ψ
(
r
,
t
)
=
i
ℏ
∂
∂
t
Ψ
(
r
,
t
)
{\displaystyle -{\frac {\hbar ^{2}{2m}\nabla ^{2}\ \Psi (\mathbf {r} ,t)=i\hbar {\frac {\partial }{\partial t}\Psi (\mathbf {r} ,t)}
;
其中,
ℏ
{\displaystyle \hbar }
是約化普朗克常數 ,
Ψ
(
r
,
t
)
{\displaystyle \Psi (\mathbf {r} ,t)}
是粒子的波函數 ,
r
{\displaystyle \mathbf {r} }
是粒子的位置,
t
{\displaystyle t}
是時間。
這薛丁格方程式有一個平面波 解:
Ψ
(
r
,
t
)
=
e
i
(
k
⋅
r
−
ω
t
)
{\displaystyle \Psi (\mathbf {r} ,t)=e^{i(\mathbf {k} \cdot \mathbf {r} -\omega t)}
;
其中,
k
{\displaystyle \mathbf {k} }
是波向量 ,
ω
{\displaystyle \omega }
是角頻率 。
代入薛丁格方程,這兩個變數必須遵守關係式
ℏ
2
k
2
2
m
=
ℏ
ω
{\displaystyle {\frac {\hbar ^{2}k^{2}{2m}=\hbar \omega }
。
由於粒子存在的機率 等於1,波函數
Ψ
(
r
,
t
)
{\displaystyle \Psi (\mathbf {r} ,t)}
必須歸一化 ,才能夠表達出正確的物理意義。對於一般的自由粒子而言,這不是問題。因為,自由粒子的波函數,在位置或動量方面,都是局部性的。在量子力學 裏,一個自由粒子的動量與能量不必須擁有特定的值。自由粒子的波函數可以表示為很多平面波的量子疊加 :
Ψ
(
r
,
t
)
=
1
(
2
π
)
3
/
2
∫
K
A
(
k
)
e
i
(
k
⋅
r
−
ω
t
)
d
k
{\displaystyle \Psi (\mathbf {r} ,t)={\frac {1}{(2\pi )^{3/2}\int _{\mathbb {K} }A(\mathbf {k} )e^{i(\mathbf {k} \cdot \mathbf {r} -\omega t)}\mathrm {d} \mathbf {k} }
;
其中,積分區域
K
{\displaystyle \mathbb {K} }
是
k
{\displaystyle \mathbf {k} }
-空間。
為了方便計算,只思考一維空間,
Ψ
(
x
,
t
)
=
1
2
π
∫
−
∞
∞
A
(
k
)
e
i
(
k
x
−
ω
(
k
)
t
)
d
k
{\displaystyle \Psi (x,t)={\frac {1}{\sqrt {2\pi }\int _{-\infty }^{\infty }A(k)~e^{i(kx-\omega (k)t)}\ \mathrm {d} k}
;
其中,振幅
A
(
k
)
{\displaystyle A(k)}
是量子疊加的係數函數。
逆反過來,係數函數表示為
A
(
k
)
=
1
2
π
∫
−
∞
∞
Ψ
(
x
,
0
)
e
−
i
k
x
d
x
{\displaystyle A(k)={\frac {1}{\sqrt {2\pi }\int _{-\infty }^{\,\infty }\Psi (x,0)~e^{-ikx}\,\mathrm {d} x}
;
其中,
Ψ
(
x
,
0
)
{\displaystyle \Psi (x,0)}
是在時間
t
=
0
{\displaystyle t=0}
的波函數。
所以,知道在時間
t
=
0
{\displaystyle t=0}
的波函數
Ψ
(
x
,
0
)
{\displaystyle \Psi (x,0)}
,通過傅立葉變換 ,可以推導出在任何時間的波函數
Ψ
(
x
,
t
)
{\displaystyle \Psi (x,t)}
。
參見
參考文獻
Bohr, N. (1927/1928). The quantum postulate and the recent development of atomic theory, Nature Supplement 14 April 1928, 121 : 580–590 (页面存档备份 ,存于互联网档案馆 ).
Cohen-Tannoudji, C. , Diu, B., Laloë, F. (1973/1977). Quantum Mechanics , translated from the French by S. R. Hemley, N. Ostrowsky, D. Ostrowsky, second edition, volume 1, Wiley, New York, ISBN 0471164321 .
Dirac, P. A. M. (1930/1958). The Principles of Quantum Mechanics , 4th edition, Oxford University Press.
Einstein, A. (1949). Remarks concerning the essays brought together in this co-operative volume, translated from the original German by the editor, pp. 665–688 in Schilpp, P. A. editor (1949), Albert Einstein: Philosopher-Scientist (页面存档备份 ,存于互联网档案馆 ), volume II , Open Court, La Salle IL.
Feynman, R. P. , Leighton, R.B., Sands, M. (1965). The Feynman Lectures on Physics , volume 3, Addison-Wesley, Reading, MA.
Merzbacher, E. (1961/1970). Quantum Mechanics , second edition, Wiley, New York.
Messiah, A. (1961). Quantum Mechanics , volume 1, translated by G.M. Temmer from the French Mécanique Quantique , North-Holland, Amsterdam.
Wheeler, J. A. ; Zurek, W.H. Quantum Theory and Measurement. Princeton NJ: Princeton University Press. 1983.
背景 基礎 表述 方程 空間幾何 詮釋 實驗 量子奈米科學
量子貝葉斯詮釋
量子生物学
量子微積分
量子化学
量子混沌
量子認知
量子宇宙學
量子微分
量子動力學
量子演化
量子幾何
量子群
測量問題
量子概率
量子隨機演算
量子時空
量子技術 進階研究 物理學者