Funció zeta de Dedekind

No s'ha de confondre amb Funció eta de Dedekind.

En matemàtica, la funció zeta de Dedekind és una sèrie de Dirichlet definida per a tot cos K de nombres algebraics, expressada com on és una variable complexa. És la suma infinita:

realitzada en tots els I ideals de l'anell dels enters de K , amb . On és la norma de I (al camp racional Q ): és igual a la cardinalitat de O K / I , en altres paraules, el nombre de classes de residu mòdul . En el cas en què K = Q aquesta definició es redueix a la funció zeta de Riemann.

Propietats

Les propietats de com una funció meromòrfica resulten d'un considerable significat en la teoria de nombres algebraics. Té un producte d'Euler, amb un factor per a un donat nombre primer al producte sobre tots els ideals primers de dividint de

Aquesta és l'expressió en termes analítics de la unicitat de la factorització en primers dels ideals .

Se sap (demostrat en forma general primer per Erich Hecke) que té una continuació analítica cap a tot el pla complex com una funció meromorfa, tenint un pol simple només en s = 1. El residu en aquest pol és una quantitat important, que involucra invariants del grup unitari i del grup de classe de K , els detalls es troben a la fórmula de nombre de classe. Hi ha una equació funcional per a la funció zeta de Dedekind, que relaciona els seus valors en s i 1 - s .

Per al cas en què K és una extensió abeliana de Q , la seva funció zeta de Dedekind pot ser escrita com un producte de funcions L de Dirichlet. Per exemple, quan K és un cos quadràtic això mostra que la relació

és una funció L , L ( s , χ); on és un símbol de Jacobi com caràcter de Dirichlet. Que la funció zeta d'un cos quadràtic sigui un producte de la funció zeta de Riemann i una certa funció L de Dirichlet és una formulació analítica de la llei de Gauss de reciprocitat quadràtica.

En general si K és una extensió de Galois de Q amb grup de Galois G , la seva funció zeta de Dedekind té una factorització comparable en termes de funcions L de Artin. Aquestes estan associades a representacions lineals de G .

Referències

Vegeu també

Enllaços externs