Trigonometrinių funkcijų grafikai: sinusas , kosinusas , tangentas , kotangentas , sekantas , kosekantas
Trigonometrinė funkcija – realaus arba kompleksinio kintamojo elementarioji funkcija: sinusas, kosinusas, tangentas, kotangentas, sekantas, kosekantas.[ 1]
Geometrine prasme trigonometrinės funkcijos nusako ryšį tarp trikampio kraštinių ir kampų .[ 2]
Viena pagrindinių šių funkcijų savybių yra jų periodiškumas, tačiau ne kiekviena periodinė funkcija, kurios argumentas yra kampas, yra trigonometrinė funkcija. Pavyzdžiui, funkcija
e
sin
x
+
cos
x
{\displaystyle e^{\sin x}+\cos x}
nėra trigonometrinė funkcija.
Trigonometrinių funkcijų pagrindinių reikšmių lentelė
α
{\displaystyle \alpha \,\!}
0° (0 rad )
30° (π/6)
45° (π/4)
60° (π/3)
90° (π/2)
180° (π)
270° (3π/2)
360° (2π)
sin
α
{\displaystyle \sin \alpha \,\!}
0
{\displaystyle {0}\,\!}
1
2
{\displaystyle {\frac {1}{2}\,\!}
2
2
{\displaystyle {\frac {\sqrt {2}{2}\,\!}
3
2
{\displaystyle {\frac {\sqrt {3}{2}\,\!}
1
{\displaystyle {1}\,\!}
0
{\displaystyle {0}\,\!}
−
1
{\displaystyle {-1}\,\!}
0
{\displaystyle {0}\,\!}
cos
α
{\displaystyle \cos \alpha \,\!}
1
{\displaystyle {1}\,\!}
3
2
{\displaystyle {\frac {\sqrt {3}{2}\,\!}
2
2
{\displaystyle {\frac {\sqrt {2}{2}\,\!}
1
2
{\displaystyle {\frac {1}{2}\,\!}
0
{\displaystyle {0}\,\!}
−
1
{\displaystyle {-1}\,\!}
0
{\displaystyle {0}\,\!}
1
{\displaystyle {1}\,\!}
t
g
α
{\displaystyle \mathop {\mathrm {tg} } \,\alpha \,\!}
0
{\displaystyle {0}\,\!}
1
3
{\displaystyle {\frac {1}{\sqrt {3}\,\!}
1
{\displaystyle {1}\,\!}
3
{\displaystyle {\sqrt {3}\,\!}
∞
{\displaystyle \infty }
0
{\displaystyle {0}\,\!}
∞
{\displaystyle \infty }
0
{\displaystyle {0}\,\!}
c
t
g
α
{\displaystyle \mathop {\mathrm {ctg} } \,\alpha \,\!}
∞
{\displaystyle \infty }
3
{\displaystyle {\sqrt {3}\,\!}
1
{\displaystyle {1}\,\!}
1
3
{\displaystyle {\frac {1}{\sqrt {3}\,\!}
0
{\displaystyle {0}\,\!}
∞
{\displaystyle \infty }
0
{\displaystyle {0}\,\!}
∞
{\displaystyle \infty }
sec
α
{\displaystyle \sec \alpha \,\!}
1
{\displaystyle {1}\,\!}
2
3
{\displaystyle {\frac {2}{\sqrt {3}\,\!}
2
{\displaystyle {\sqrt {2}\,\!}
2
{\displaystyle {2}\,\!}
∞
{\displaystyle \infty }
−
1
{\displaystyle {-1}\,\!}
∞
{\displaystyle \infty }
1
{\displaystyle {1}\,\!}
cosec
α
{\displaystyle \operatorname {cosec} \,\alpha \,\!}
∞
{\displaystyle \infty }
2
{\displaystyle {2}\,\!}
2
{\displaystyle {\sqrt {2}\,\!}
2
3
{\displaystyle {\frac {2}{\sqrt {3}\,\!}
1
{\displaystyle {1}\,\!}
∞
{\displaystyle \infty }
−
1
{\displaystyle {-1}\,\!}
∞
{\displaystyle \infty }
Trigonometrinių funkcijų reikšmės nestandartiniams kampams
α
{\displaystyle \alpha \,}
π
12
=
15
∘
{\displaystyle {\frac {\pi }{12}=15^{\circ }
π
10
=
18
∘
{\displaystyle {\frac {\pi }{10}=18^{\circ }
π
8
=
22
,
5
∘
{\displaystyle {\frac {\pi }{8}=22,5^{\circ }
π
5
=
36
∘
{\displaystyle {\frac {\pi }{5}=36^{\circ }
3
π
10
=
54
∘
{\displaystyle {\frac {3\,\pi }{10}=54^{\circ }
3
π
8
=
67
,
5
∘
{\displaystyle {\frac {3\,\pi }{8}=67,5^{\circ }
2
π
5
=
72
∘
{\displaystyle {\frac {2\,\pi }{5}=72^{\circ }
sin
α
{\displaystyle \sin \alpha \,}
3
−
1
2
2
{\displaystyle {\frac {\sqrt {3}-1}{2\,{\sqrt {2}
5
−
1
4
{\displaystyle {\frac {\sqrt {5}-1}{4}
2
−
2
2
{\displaystyle {\frac {\sqrt {2-{\sqrt {2}{2}
5
−
5
2
2
{\displaystyle {\frac {\sqrt {5-{\sqrt {5}{2\,{\sqrt {2}
5
+
1
4
{\displaystyle {\frac {\sqrt {5}+1}{4}
2
+
2
2
{\displaystyle {\frac {\sqrt {2+{\sqrt {2}{2}
5
+
5
2
2
{\displaystyle {\frac {\sqrt {5+{\sqrt {5}{2\,{\sqrt {2}
cos
α
{\displaystyle \cos \alpha \,}
3
+
1
2
2
{\displaystyle {\frac {\sqrt {3}+1}{2\,{\sqrt {2}
5
+
5
2
2
{\displaystyle {\frac {\sqrt {5+{\sqrt {5}{2\,{\sqrt {2}
2
+
2
2
{\displaystyle {\frac {\sqrt {2+{\sqrt {2}{2}
5
+
1
4
{\displaystyle {\frac {\sqrt {5}+1}{4}
5
−
5
2
2
{\displaystyle {\frac {\sqrt {5-{\sqrt {5}{2\,{\sqrt {2}
2
−
2
2
{\displaystyle {\frac {\sqrt {2-{\sqrt {2}{2}
5
−
1
4
{\displaystyle {\frac {\sqrt {5}-1}{4}
tg
α
{\displaystyle \operatorname {tg} \,\alpha }
2
−
3
{\displaystyle 2-{\sqrt {3}
1
−
2
5
{\displaystyle {\sqrt {1-{\frac {2}{\sqrt {5}
2
−
1
2
+
1
{\displaystyle {\sqrt {\frac {\sqrt {2}-1}{\sqrt {2}+1}
5
−
2
5
{\displaystyle {\sqrt {5-2\,{\sqrt {5}
1
+
2
5
{\displaystyle {\sqrt {1+{\frac {2}{\sqrt {5}
2
+
1
2
−
1
{\displaystyle {\sqrt {\frac {\sqrt {2}+1}{\sqrt {2}-1}
5
+
2
5
{\displaystyle {\sqrt {5+2\,{\sqrt {5}
ctg
α
{\displaystyle \operatorname {ctg} \,\alpha }
2
+
3
{\displaystyle 2+{\sqrt {3}
5
+
2
5
{\displaystyle {\sqrt {5+2\,{\sqrt {5}
2
+
1
2
−
1
{\displaystyle {\sqrt {\frac {\sqrt {2}+1}{\sqrt {2}-1}
1
+
2
5
{\displaystyle {\sqrt {1+{\frac {2}{\sqrt {5}
5
−
2
5
{\displaystyle {\sqrt {5-2\,{\sqrt {5}
2
−
1
2
+
1
{\displaystyle {\sqrt {\frac {\sqrt {2}-1}{\sqrt {2}+1}
1
−
2
5
{\displaystyle {\sqrt {1-{\frac {2}{\sqrt {5}
tg
π
120
=
tg
1
,
5
∘
=
8
−
2
(
2
−
3
)
(
3
−
5
)
−
2
(
2
+
3
)
(
5
+
5
)
8
+
2
(
2
−
3
)
(
3
−
5
)
+
2
(
2
+
3
)
(
5
+
5
)
{\displaystyle \operatorname {tg} {\frac {\pi }{120}=\operatorname {tg} 1,5^{\circ }={\sqrt {\frac {8-{\sqrt {2(2-{\sqrt {3})(3-{\sqrt {5})}-{\sqrt {2(2+{\sqrt {3})(5+{\sqrt {5})}{8+{\sqrt {2(2-{\sqrt {3})(3-{\sqrt {5})}+{\sqrt {2(2+{\sqrt {3})(5+{\sqrt {5})}
cos
π
240
=
1
16
(
2
−
k
(
2
(
5
+
5
)
+
3
−
15
)
+
2
+
k
(
6
(
5
+
5
)
+
5
−
1
)
)
{\displaystyle \cos {\frac {\pi }{240}={\frac {1}{16}\left({\sqrt {2-k}\left({\sqrt {2(5+{\sqrt {5})}+{\sqrt {3}-{\sqrt {15}\right)+{\sqrt {2+k}\left({\sqrt {6(5+{\sqrt {5})}+{\sqrt {5}-1\right)\right)}
, kur
k
=
2
+
2
{\displaystyle k={\sqrt {2+{\sqrt {2}
.
cos
π
17
=
1
8
2
(
2
17
k
2
−
k
2
−
4
2
(
17
+
17
)
+
3
17
+
17
+
2
k
+
17
+
15
)
{\displaystyle \cos {\frac {\pi }{17}={\frac {1}{8}{\sqrt {2\left(2{\sqrt {\sqrt {\frac {17k}{2}-{\sqrt {\frac {k}{2}-4{\sqrt {2(17+{\sqrt {17})}+3{\sqrt {17}+17}+{\sqrt {2k}+{\sqrt {17}+15\right)}
, kur
k
=
17
−
17
{\displaystyle k=17-{\sqrt {17}
.
u
{\displaystyle u}
π
2
+
α
{\displaystyle {\frac {\pi }{2}+\alpha }
π
+
α
{\displaystyle \pi +\alpha }
3
π
2
+
α
{\displaystyle {\frac {3\pi }{2}+\alpha }
−
α
{\displaystyle -\alpha }
π
2
−
α
{\displaystyle {\frac {\pi }{2}-\alpha }
π
−
α
{\displaystyle \pi -\alpha }
3
π
2
−
α
{\displaystyle {\frac {3\pi }{2}-\alpha }
sin
u
{\displaystyle \sin u\,}
cos
α
{\displaystyle \cos \alpha }
−
sin
α
{\displaystyle -\sin \alpha }
−
cos
α
{\displaystyle -\cos \alpha }
−
sin
α
{\displaystyle -\sin \alpha }
cos
α
{\displaystyle \cos \alpha }
sin
α
{\displaystyle \sin \alpha }
−
cos
α
{\displaystyle -\cos \alpha }
cos
u
{\displaystyle \cos u\,}
−
sin
α
{\displaystyle -\sin \alpha }
−
cos
α
{\displaystyle -\cos \alpha }
sin
α
{\displaystyle \sin \alpha }
cos
α
{\displaystyle \cos \alpha }
sin
α
{\displaystyle \sin \alpha }
−
cos
α
{\displaystyle -\cos \alpha }
−
sin
α
{\displaystyle -\sin \alpha }
tg
u
{\displaystyle \operatorname {tg} u}
−
ctg
α
{\displaystyle -\operatorname {ctg} \alpha }
tg
α
{\displaystyle \operatorname {tg} \alpha }
−
ctg
α
{\displaystyle -\operatorname {ctg} \alpha }
−
tg
α
{\displaystyle -\operatorname {tg} \alpha }
ctg
α
{\displaystyle \operatorname {ctg} \alpha }
−
tg
α
{\displaystyle -\operatorname {tg} \alpha }
ctg
α
{\displaystyle \operatorname {ctg} \alpha }
ctg
u
{\displaystyle \operatorname {ctg} u}
−
tg
α
{\displaystyle -\operatorname {tg} \alpha }
ctg
α
{\displaystyle \operatorname {ctg} \alpha }
−
tg
α
{\displaystyle -\operatorname {tg} \alpha }
−
ctg
α
{\displaystyle -\operatorname {ctg} \alpha }
tg
α
{\displaystyle \operatorname {tg} \alpha }
−
ctg
α
{\displaystyle -\operatorname {ctg} \alpha }
tg
α
{\displaystyle \operatorname {tg} \alpha }
Trigonometrinių funkcijų savybės
Pagrindinės lygybės
Kadangi sinusas ir kosinusas yra atitinkamai taško, atitinkančio kampo α apskritimą, ordinatė ir abscisė, tai pagal Pitagoro teoremą:
sin
2
α
+
cos
2
α
=
1.
{\displaystyle \sin ^{2}\alpha +\cos ^{2}\alpha =1.\qquad \qquad \,}
Abi šios lygties puses padalijus iš sinuso kvadrato arba kosinuso kvadrato, gaunama:
1
+
t
g
2
α
=
1
cos
2
α
,
{\displaystyle 1+\mathop {\mathrm {tg} } \,^{2}\alpha ={\frac {1}{\cos ^{2}\alpha },\qquad \qquad \,}
1
+
c
t
g
2
α
=
1
sin
2
α
.
{\displaystyle 1+\mathop {\mathrm {ctg} } \,^{2}\alpha ={\frac {1}{\sin ^{2}\alpha }.\qquad \qquad \,}
Periodiškumas
Funkcijos
y
=
sin
α
{\displaystyle y=\sin \alpha }
,
y
=
cos
α
{\displaystyle y=\cos \alpha }
,
y
=
sec
α
{\displaystyle y=\sec \alpha }
ir
y
=
csc
α
{\displaystyle y=\csc \alpha }
yra periodinės funkcijos su periodu
2
π
{\displaystyle 2\pi }
. O funkcijos
y
=
tg
α
{\displaystyle y=\operatorname {tg} \alpha }
ir
y
=
ctg
α
{\displaystyle y=\operatorname {ctg} \alpha }
yra periodinės su periodu
π
{\displaystyle \pi }
Lyginės ir nelyginės funkcijos
Kosinusas yra lyginė funkcija, nes
cos
(
−
α
)
=
cos
α
.
{\displaystyle \cos(-\alpha )=\cos \alpha .}
Sinusas yra nelyginė funkcija, nes
sin
(
−
α
)
=
−
sin
α
.
{\displaystyle \sin(-\alpha )=-\sin \alpha .}
Tangentas ir kotangentas yra nelyginės funkcijos, t. y.
tg
(
−
α
)
=
−
tg
α
;
{\displaystyle {\text{tg}(-\alpha )=-{\text{tg}\;\alpha ;}
ctg
(
−
α
)
=
−
ctg
α
.
{\displaystyle {\text{ctg}(-\alpha )=-{\text{ctg}\;\alpha .}
Kai kurios lygybės
cos
x
=
sin
(
x
+
π
2
)
.
{\displaystyle \cos x=\sin {\Big (}x+{\frac {\pi }{2}{\Big )}.}
Į formulę
cos
(
α
−
β
)
=
cos
α
cos
β
+
sin
α
sin
β
(
1
)
{\displaystyle \cos(\alpha -\beta )=\cos \alpha \cos \beta +\sin \alpha \sin \beta \quad (1)}
įstačius
π
2
{\displaystyle {\frac {\pi }{2}
vietoje
α
{\displaystyle \alpha }
ir įstačius
α
{\displaystyle \alpha }
vietoje
β
{\displaystyle \beta }
gausime
cos
(
π
2
−
α
)
=
cos
π
2
cos
α
+
sin
π
2
sin
α
=
sin
α
.
{\displaystyle \cos({\frac {\pi }{2}-\alpha )=\cos {\frac {\pi }{2}\cos \alpha +\sin {\frac {\pi }{2}\sin \alpha =\sin \alpha .}
Gautoje formulėje
sin
α
=
cos
(
π
2
−
α
)
(
2
)
{\displaystyle \sin \alpha =\cos({\frac {\pi }{2}-\alpha )\quad (2)}
įstačius
α
+
β
{\displaystyle \alpha +\beta }
vietoje
α
,
{\displaystyle \alpha ,}
gausime
sin
(
α
+
β
)
=
cos
(
π
2
−
α
−
β
)
=
cos
(
(
π
2
−
α
)
−
β
)
.
{\displaystyle \sin(\alpha +\beta )=\cos({\frac {\pi }{2}-\alpha -\beta )=\cos(({\frac {\pi }{2}-\alpha )-\beta ).}
Toliau į (1) formulę įstačius
π
2
−
α
{\displaystyle {\frac {\pi }{2}-\alpha }
vietoje
α
,
{\displaystyle \alpha ,}
gausime
sin
(
α
+
β
)
=
cos
(
(
π
2
−
α
)
−
β
)
=
{\displaystyle \sin(\alpha +\beta )=\cos(({\frac {\pi }{2}-\alpha )-\beta )=}
=
cos
(
π
2
−
α
)
cos
β
+
sin
(
π
2
−
α
)
sin
β
=
{\displaystyle =\cos({\frac {\pi }{2}-\alpha )\cos \beta +\sin({\frac {\pi }{2}-\alpha )\sin \beta =}
=
sin
α
cos
β
+
cos
α
sin
β
.
{\displaystyle =\sin \alpha \cos \beta +\cos \alpha \sin \beta .}
Pasinaudojome formule
sin
(
π
2
−
α
)
=
cos
α
,
(
3
)
{\displaystyle \sin({\frac {\pi }{2}-\alpha )=\cos \alpha ,\quad (3)}
kuri išplaukia iš formulės (2) įstačius į ją
π
2
−
α
{\displaystyle {\frac {\pi }{2}-\alpha }
vietoje
α
;
{\displaystyle \alpha ;}
tada
[
sin
α
=
cos
(
π
2
−
α
)
(
2
)
{\displaystyle \sin \alpha =\cos({\frac {\pi }{2}-\alpha )\quad (2)}
]
sin
(
π
2
−
α
)
=
cos
(
π
2
−
(
π
2
−
α
)
)
=
cos
α
.
{\displaystyle \sin({\frac {\pi }{2}-\alpha )=\cos({\frac {\pi }{2}-({\frac {\pi }{2}-\alpha ))=\cos \alpha .}
Taigi, gavome formulę (3).
Šaltiniai