การแปลงฟูรีเย
การแปลงฟูรีเย (อังกฤษ: Fourier transform) ตั้งชื่อตาม โฌแซ็ฟ ฟูรีเย หมายถึงการแปลงเชิงปริพันธ์ โดยเป็นการเขียนแทนฟังก์ชันใด ๆ ในรูปผลบวก หรือปริพันธ์ ของฐาน ที่เป็นฟังก์ชันรูปคลื่น ไซน์หรือ โคไซน์
รูปแบบต่าง ๆ ที่เกี่ยวข้องกับการแปลงฟูรีเย
การแปลงฟูรีเยแบบต่อเนื่อง
โดยปกติแล้วคำ "การแปลงฟูรีเย" จะใช้หมายถึง การแปลงฟูรีเยต่อเนื่อง ซึ่งเป็นการเขียนแทน ฟังก์ชัน f (t) ที่สามารถหาปริพันธ์ของกำลังสองได้ ด้วยผลบวกของ ฟังก์ชัน เอกซ์โปเนนเชียลเชิงซ้อน ซึ่งมี ความถี่เชิงมุม ω และ ขนาด (หรือ แอมปลิจูด) เป็นจำนวนเชิงซ้อน F (ω) ;
ความสัมพันธ์ด้านบนคือ การแปลงกลับของ การแปลงฟูรีเยแบบต่อเนื่อง (Inverse Fourier transform) ส่วนการแปลงฟูรีเยนั้นปกติจะเขียน F (ω) ในรูปของ f (t) คู่ของ ฟังก์ชันดั้งเดิม และ ผลของการแปลงของฟังก์ชันนั้น บางครั้งก็เรียก คู่ของการแปลง (transform pair) ดูข้อมูลเพิ่มเติมที่ การแปลงฟูรีเยต่อเนื่อง ภาคขยายของการแปลงนี้คือ การแปลงฟูรีเยแบบไม่เป็นจำนวนเต็ม (fractional Fourier transform) ซึ่งค่ายกกำลังของการแปลง (จำนวนการแปลงซ้ำ) นั้นไม่จำเป็นจะต้องเป็นจำนวนเต็ม สามารถเป็นค่าจำนวนจริงใด ๆ
เมื่อ f (t) เป็น ฟังก์ชันคู่ (ฟังก์ชันคี่) เทอม ไซน์ (โคไซน์) จะไม่ปรากฏ ซึ่งคงเหลือไว้แต่ การแปลงโคไซน์ และ การแปลงไซน์ ตามลำดับ อีกกรณีหนึ่งคือ เมื่อ f (t) เป็นฟังก์ชันค่าจริง จะทำให้ F (−ω) = F (ω) *
อนุกรมฟูรีเย
การแปลงฟูรีเยต่อเนื่องนั้นเป็นภาคขยาย ของแนวความคิดที่เกิดก่อนหน้านั้น คือ อนุกรมฟูรีเย ซึ่งเป็นการเขียนแทน ฟังก์ชันคาบ (หรือฟังก์ชัน ในโดเมนจำกัด) f (x) (มีคาบ 2π) ด้วย อนุกรม ของฟังก์ชันรูปคลื่น:
ซึ่ง เป็น ค่าจำนวนเชิงซ้อนของขนาด หรือ ค่าจริงของขนาดเมื่อ ฟังก์ชันเป็นฟังก์ชันค่าจริง อนุกรมฟูรีเยยังอาจเขียนในรูป:
โดย an และ bn เป็นค่าจำนวนจริงของขนาด ของอนุกรมฟูรีเย
การแปลงฟูรีเยไม่ต่อเนื่อง
สำหรับการคำนวณด้วยเครื่องคอมพิวเตอร์ ค่าสัญญาณในทั้งสองโดเมนจำเป็นต้องมีค่าเป็นดิจิทัล ซึ่งคือฟังก์ชันค่าไม่ต่อเนื่อง บนโดเมนไม่ต่อเนื่อง แทนที่จะเป็นโดเมนต่อเนื่อง ในช่วงจำกัด หรือ เป็นคาบ ในกรณีนี้เราจะใช้ การแปลงฟูรีเยไม่ต่อเนื่อง (discrete Fourier transform-DFT) ซึ่งเขียนแทน ด้วยผลบวกของฟังก์ชันคาบ
โดยที่ คือ ค่าขนาดบนโดเมนการแปลง การคำนวณจากสมการข้างต้นจะใช้ความซับซ้อนในการคำนวณ O (N2) ซึ่งสามารถลดลงเหลือเพียง O (N log N) โดยการใช้ขั้นตอนวิธี การแปลงฟูรีเยอย่างเร็ว (fast Fourier transform-FFT)
รูปแบบอื่น ๆ
DFT เป็นกรณีที่เป็นฟังก์ชันไม่ต่อเนื่องบนทั้งสองโดเมน ซึ่งบางครั้งใช้ในการประมาณค่าของ การแปลงฟูรีเยเวลาไม่ต่อเนื่อง (discrete-time Fourier transform-DTFT) ซึ่ง เป็นค่าไม่ต่อเนื่องบนโดเมนที่ไม่จำกัด ดังนั้นจึงมีสเปกตรัมเป็นค่าต่อเนื่อง และเป็นคาบ DTFTเป็นความสัมพันธ์ตรงข้ามกับ อนุกรมฟูรีเย
การแปลงฟูรีเย สามารถขยายความการแปลงบน อาบีเลียนโทโพโลยีกรุ๊ปใด ๆ ที่คอมแพคเฉพาะที่ (locally compact abelian topological group) เป็นการแปลงจากกรุ๊ปหนึ่งไปยังกรุ๊ปคู่ของมัน ซึ่งเป็นหัวข้อใน การวิเคราะห์ฮาร์โมนิก (harmonic analysis) ภายใต้การขยายความนี้ทำให้สามารถ สร้างความสัมพันธ์ทั่วไปของ ทฤษฎีการคอนโวลูชัน (en:convolution theorem) ซึ่งเป็นทฤษฎีความสัมพันธ์ระหว่าง การแปลงฟูรีเย และ การคอนโวลูชัน ดู ความเป็นคู่ของพอนเทรียกิน (en:Pontryagin duality) สำหรับพื้นฐานภาคขยายความของการแปลงฟูรีเย
นอกจากนั้นแล้ว ยังมีภาคขยายเพื่อการวิเคราะห์ข้อมูลความถี่ ณ จุดเวลาใด ๆ คือ การแปลง เวลา-ความถี่ (Time-frequency transform) เช่น การแปลงฟูรีเยช่วงเวลาสั้น (short-time Fourier transform) การแปลงเวฟเลท (wavelet transform) การแปลงเชิพเลท (chirplet transform) และ การแปลงฟูรีเยแบบไม่เป็นจำนวนเต็ม (fractional Fourier transform) เป็นการแปลงซึ่งมีจุดมุ่งหมายในการคำนวณ ข้อมูลความถี่ ของสัญญาณ ในรูปฟังก์ชันของเวลา ความสามารถในการคำนวณหาข้อมูลบนทั้งโดเมนเวลา และ ความถี่พร้อม ๆ กันนั้นจะถูกจำกัดโดย กฎความไม่แน่นอน (uncertainty principle)
การแปลงในตระกูลการแปลงฟูรีเย
ตารางด้านล่างสรุปการแปลงทั้งหมดที่อยู่ในตระกูลเดียวกับการแปลงฟูรีเย จะสังเกตเห็นว่าความต่อเนื่องหรือความไม่ต่อเนื่องในโดเมนหนึ่ง จะส่งผลให้เกิดความเป็นคาบหรือความไม่เป็นคาบในอีกโดเมนหนึ่ง นอกจากนั้นแล้วการมีค่าเป็นจำนวนจริงในโดเมนหนึ่ง จะส่งผลให้เกิดความสมมาตรในอีกโดเมน
การแปลง | เวลา | ความถี่ |
---|---|---|
การแปลงฟูรีเยต่อเนื่อง | ต่อเนื่อง, ไม่เป็นคาบ | ต่อเนื่อง, ไม่เป็นคาบ |
อนุกรมฟูรีเย | ต่อเนื่อง, เป็นคาบ | ไม่ต่อเนื่อง, ไม่เป็นคาบ |
การแปลงฟูรีเยเวลาไม่ต่อเนื่อง | ไม่ต่อเนื่อง, ไม่เป็นคาบ | ต่อเนื่อง, เป็นคาบ |
การแปลงฟูรีเยไม่ต่อเนื่อง | ไม่ต่อเนื่อง, เป็นคาบ | ไม่ต่อเนื่อง, เป็นคาบ |
ประวัติศาสตร์ การพัฒนา อุปสรรค และความขัดแย้ง
หมายเหตุ : เนื้อหาส่วนใหญ่ในส่วนนี้ถือตาม[1] ซึ่งมีการอ้างอิงถึงเอกสารดั้งเดิมอย่างละเอียด และเนื้อหาอาจมีความแตกต่างจากแหล่งอื่น
อนุกรมฟูรีเย และบทความปี ค.ศ. 1807
ทฤษฎีการแปลงฟูรีเย มีจุดเริ่มต้นจากบทความของ ฟูรีเย ที่เขียนในปี ค.ศ. 1807 (ถูกปฏิเสธ) กับ ค.ศ. 1811 (ตีพิมพ์ในปี ค.ศ. 1824 และ ค.ศ. 1826) และ หนังสือ ทฤษฎีการวิเคราะห์ความร้อน ในปีค.ศ. 1822
เริ่มต้นจาก ฟูรีเย ได้ส่งบทความวิชาการของเขาในหัวข้อการแพร่กระจายความร้อน ไปยัง สถาบันแห่งชาติฝรั่งเศส ในวันที่ 21 ธันวาคม ค.ศ. 1807 ซึ่งในขณะนั้น เดอลอมเบรอ เป็นเลขาธิการถาวร ในสาขาวิทยาศาสตร์กายภาพ และ คณิตศาสตร์ เดอลอมเบรอมอบหมายให้ลากรองจ์ ลาปลาส ลาครัวซ์ และมงจ์ เป็นกรรมการตรวจสอบบทความ โดยที่มงจ์ให้การสนับสนุน ส่วนลาปลาสและลาครัวซ์ก็ให้ความเห็นชอบ แต่ลากรองจ์ไม่ยอมรับแนวความคิดของฟูรีเย เป็นผลให้บทความของฟูรีเยนั้นถูกปฏิเสธรับเพื่อตีพิมพ์ มีเพียงแต่บทวิจารณ์ในงานของฟูรีเยโดย ปัวซง เท่านั้นที่ตีพิมพ์ออกเผยแพร่ ซึ่งบทวิจารณ์ของปัวซงก็ไม่ได้ให้ความสำคัญกับแนวความคิดของฟูรีเยแต่อย่างใด
หมายเหตุ : (ความสัมพันธ์ระหว่างบุคคล) ฟูรีเยนั้นเคยเรียนกับ ลากรองจ์ ลาปลาส และมงจ์ ที่ เอกอล นอร์มาล (วิทยาลัยครู) ในปี ค.ศ. 1795 ซึ่งเปิดสอนได้ไม่กี่เดือนก็ต้องปิดไป ฟูรีเยย้ายไปที่ เอกอล โปลีเทคนีค (วิทยาลัยโปลีเทคนิค) ซึ่งมงจ์เป็นผู้อำนวยการ แต่ไม่สามารถเข้าเป็นนักเรียนได้เนื่องจากมีอายุมากกว่าเกณฑ์คือ 20 ปี มงจ์จึงช่วยเหลือให้ฟูรีเยได้เป็นผู้ช่วยสอน
อุปสรรคจากลากรองจ์
เหตุผลในการตอบปฏิเสธบทความของฟูรีเย นั้นมีหลายจุด แต่หลัก ๆ นั้นไม่เห็นด้วยกับ อนุกรมฟูรีเย โดยเฉพาะอย่างยิ่ง คุณสมบัติการลู่เข้า ของอนุกรมฟังก์ชันตรีโกณมิติ หลังจากนั้นฟูรีเยได้ส่ง รายละเอียดเพิ่มเติมเกี่ยวกับคุณสมบัติการลู่เข้าไปหาลากรองจ์ และ ในเดือนตุลาคม ค.ศ. 1809 ได้ส่งเอกสารเพิ่มเติม เกี่ยวกับข้อกังขาต่าง ๆ ของกรรมการที่มีต่อบทความในปี ค.ศ. 1807 ไปยัง สถาบันแห่งชาติฝรั่งเศส แต่บทความปี ค.ศ. 1807 ก็ไม่ได้รับการตีพิมพ์
เบิร์นฮาร์ด รีมันน์ ได้กล่าวว่า เมื่อฟูรีเย ได้นำเสนอแนวความคิดของเขาในบทความ ปี ค.ศ. 1807 นั้น ผลลัพธ์เป็นที่น่าประหลาดใจมาก จนลากรองจ์ได้แสดงความเห็นว่าเป็นไปไม่ได้อย่างเด็ดขาด[2]
เหตุผลที่ลากรองจ์ ไม่เห็นด้วยกับบทความของฟูรีเย นั้นสามารถสืบย้อนกลับไปถึงปัญหาการสั่นของเชือก (wave equation) ดูบทความหลัก สมการคลื่น
ซึ่งผู้ที่ทำการศึกษาและหาคำตอบทั่วไปในยุคแรก ๆ คือ ดาเลมแบร์ ออยเลอร์ และ ดานีเอล แบร์นูลี
ในปี ค.ศ. 1747 ดาเลมแบร์ ได้เสนอคำตอบในรูปฟังก์ชันนอล และพิจารณาเงื่อนไขขอบ ถึงแม้ว่าฟังก์ชันในรูปที่ ดาเลมแบร์พิจารณานั้นมีรูปแบบทั่วไป แต่เขาก็ยึดติดกับรูปแบบของฟังก์ชันพีชคณิต ที่มีอนุพันธ์ ในปีถัดมา ค.ศ. 1748 ออยเลอร์ ได้ยกปัญหาของฟังก์ชันที่ไม่สามารถหาอนุพันธ์ได้ และ เสนอแนวความคิดของการกำหนดฟังก์ชัน บนโดเมนที่แบ่งออกเป็นส่วน ๆ
การใช้อนุกรมของฟังก์ชันตรีโกณมิติ เป็นรูปแบบคำตอบสมการคลื่น นั้นถูกนำเสนอเป็นครั้งแรกโดย ดานีเอล แบร์นูลี ในปี ค.ศ. 1753 ในรูป
แนวความคิดของดานีเอล แบร์นูลี ไม่ได้มาจากคุณสมบัติทางคณิตศาสตร์ แต่มาจากคุณสมบัติทางกายภาพที่เห็นได้ชัด ของการซ้อนทับกันของการสั่นที่หลายความถี่
ในปี ค.ศ. 1754 เลออนฮาร์ด ออยเลอร์ ได้ตั้งข้อโต้แย้งกับแนวความคิดการใช้ฟังก์ชันตรีโกณมิติดังกล่าวของแบร์นูลี โดยได้บ่งชี้ถึงงานของเขา ในปี ค.ศ. 1748 ซึ่งได้พิจารณาฟังก์ชันตรีโกณมิติเป็นตัวอย่าง ออยเลอร์ได้ให้เหตุผลของการไม่ยอมรับแนวความคิดของการใช้ อนุกรมฟังก์ชันตรีโกณมิติ แทนฟังก์ชันใด ๆ ไว้ว่า ถึงแม้ว่าสัมประสิทธิ์จำนวนนับไม่ถ้วน ในอนุกรมจะให้ความยืดหยุ่น ในการใช้อนุกรมแทนฟังก์ชันทั่วไป แต่เนื่องจากคุณสมบัติ ความเป็นคาบ และ ความเป็นฟังก์ชันคี่ ของไซน์ นั้นทำให้การใช้อนุกรมนี้แทนฟังก์ชันใด ๆ ที่ไม่มีคุณสมบัติดังกล่าวนั้นเป็นไปไม่ได้
ในปีค.ศ. 1859 ลากรองจ์ ได้เขียนบทความเกี่ยวกับปัญหาการสั่นของเชือกนี้ ลากรองจ์ยอมรับในหลักการทั่วไป และ รูปแบบคำตอบของออยเลอร์ แต่ลากรองจ์ได้นำเสนอวิธีการทำให้ได้มาซึ่งคำตอบ จากมุมมองที่แตกต่างจากออยเลอร์ ลากรองจ์ได้เสนอแบบจำลองวัตถุ n ชิ้น (n-body model) และหาคำตอบที่จำนวนวัตถุ n มีค่าเข้าสู่ อินฟินิตี้ ได้คำตอบในรูป
โดยที่ Y (x) คือ ตำแหน่งเริ่มต้นของเชือก และ V (x) คือความเร็วเริ่มต้น
สังเกตว่า สมการของลากรองจ์นี้ หากแทนค่า เวลา t = 0 จะได้อนุกรมฟูรีเย ถึงแม้ว่าจะสามารถหาอนุกรมฟูรีเยจากสมการของลากรองจ์ได้ แต่จุดประสงค์ของสมการนี้ไม่ได้มีจุดมุ่งหมายที่จะนำไปสู่แนวความคิดนั้น โดยได้มีการตั้งข้อสังเกตการสลับตำแหน่งของ และ Σ[1] โดยลากรองจ์นั้นสลับเอา Σไว้ภายในอินทิเกรต ซึ่งหากสมการอยู่ในรูปที่ขึ้นต้นด้วย ผลบวกจะทำให้อยู่ในรูปของอนุกรมอนันต์ ซึ่งบ่งชี้ถึงความไม่เห็นด้วยถึงหลักการเขียนแทนฟังก์ชันทั่วไปด้วยอนุกรมฟังก์ชันตรีโกณมิติ นอกจากนั้นแล้วยังมีข้อบ่งชี้ถึงความสัมพันธ์ระหว่างแนวคิดของลากรองจ์ในการหาคำตอบข้างต้น ซึ่งรูปคำตอบนั้นเป็นไปในแนวความคิดเดียวกับออยเลอร์ ผู้ซึ่งได้แสดงความไม่เห็นด้วยกับแนวความคิดของ ดาเนียล เบอร์นูลลี ในการใช้อนุกรมฟังก์ชันตรีโกณมิติในการแทนฟังก์ชันทั่วไปด้วยเหตุผลของ ความเป็นคาบ และความเป็นฟังก์ชันคี่ดังกล่าวข้างต้น ดังนั้นความไม่เห็นด้วยของลากรองจ์ต่อแนวความคิดของฟูรีเย ก็อาจจะมาจากพื้นฐานเดียวกัน
การแปลงฟูรีเย และ บทความปี ค.ศ. 1811
ต่อมาสถาบันแห่งชาติฝรั่งเศส ได้ตั้งปัญหารางวัลกรังปรีซ์คณิตศาสตร์สำหรับปี ค.ศ. 1812 ในหัวข้อการแพร่กระจายความร้อน ซึ่งฟูรีเยได้ส่งบทความ บันทึกเกี่ยวกับการแพร่กระจายของความร้อน ซึ่งเป็นบทความที่พัฒนาจากบทความปี ค.ศ. 1807 ของเขา เข้าชิงรางวัลในปลายปี ค.ศ. 1811 โดยมี ลากรองจ์ ลาปลัส และ อาเดรียน-มารี เลอจองเดรอ เป็นกรรมการตรวจสอบ ถึงแม้ว่าบทความของฟูรีเยจะชนะรางวัล แต่บทความของเขาก็โดนวิพากษ์วิจารณ์ ถึงวิธีการที่ใช้ในการวิเคราะห์และพิสูจน์ และถูกเก็บดองไว้ไม่ได้ตีพิมพ์ใน บันทึกของราชบัณฑิตยสภาวิทยาศาสตร์ ในขณะนั้น
หมายเหตุ : (ความสัมพันธ์ระหว่างบุคคล) ในวัยเยาว์ ฟูรีเยได้เข้าเรียนที่โรงเรียนการทหารในเมืองของเขา โดยมี เลอจองเดรอ เป็นผู้อำนวยการโรงเรียน (ผู้ตรวจสอบ) ต่อมาเขาได้สมัครเข้าเรียนต่อที่โรงเรียนการวิศวกรรม และ ปีนใหญ่ โดยได้รับการสนับสนุนจาก เลอจองเดรอ แต่เขาถูกตอบปฏิเสธการรับเข้า
บทความของฟูรีเยในปี ค.ศ. 1811 นั้นได้ขยายความจากอนุกรมอนันต์ ออกไปครอบคลุมถึงรูปปริพันธ์ ดูบทความหลัก การแปลงฟูรีเยต่อเนื่อง ถึงแม้ว่าจะไม่มีข้อมูลเด่นชัดถึงแรงบันดาลใจที่ฟูรีเยขยายความจากอนุกรมไปสู่รูปปริพันธ์ได้อย่างไร ได้มีการตั้งข้อสันนิษฐานว่าอาจได้รับอิทธิพลมาจากลาปลัส[1] เนื่องจากในช่วงปี ค.ศ. 1809 นั้นฟูรีเยได้มีการติดต่อกับลาปลัส ในเรื่องของปัญหาการแพร่ความร้อนที่เขาทำการศึกษา ซึ่งต่อมาลาปลัสได้นำเสนอคำตอบซึ่งอยู่ในรูปปริพันธ์ ถึงแม้ว่าจะมีแนวความคิดที่แตกต่างจากของฟูรีเย แต่ก็อาจจะเป็นจุดบันดาลใจให้ฟูรีเยได้คิด
ในปี ค.ศ. 1817 ออกุสตัง หลุยส์ โคชี ได้ตีพิมพ์บทความ ซึ่งมีการแปลงรูปปริพันธ์ของฟูรีเย ในบทความนั้นโคชี ได้กล่าวว่าเขาได้ค้นพบรูปคำตอบใหม่ของสมการเชิงอนุพันธ์ย่อยในรูปปริพันธ์ ฟูรีเยได้ทำการทักท้วง ซึ่งส่งผลให้ในบทความถัดมาของโคชี ในปี ค.ศ. 1818 มีข้อความแสดงการยอมรับถึงการค้นพบก่อนหน้าเขาโดยฟูรีเย มีการตั้งข้อสังเกตว่า เนื่องจากในปี ค.ศ. 1816 นั้นโคชี ได้รับตำแหน่งที่ว่างลงใน ราชบัณฑิตยสภาวิทยาศาสตร์ ทำให้เขาอยู่ในตำแหน่งที่สามารถอ่านบทความในปี ค.ศ. 1811 ของฟูรีเยซึ่งยังไม่ได้รับการตีพิมพ์ได้ นอกจากนั้นในปีเดียวกันคือ ค.ศ. 1816 ฟูรีเยได้พิมพ์บทคัดย่อของหนังสือที่เขาจะเขียนออกในปี ค.ศ. 1822 ดังนั้นจึงมีความเป็นไปได้มากที่ โคชีได้อ่านบทความของฟูรีเยมาแล้ว[1]
หลังจากที่ ลากรองจ์เสียชีวิตลงในปี ค.ศ. 1813 เมื่อเดอลอมเบรอได้เสียชีวิตในปี ค.ศ. 1824 ฟูรีเยได้รับเลือกให้ขึ้นดำรงตำแหน่งเลขาธิการถาวร ด้วยความคาใจฟูรีเยจึงได้ตีพิมพ์บทความในปี ค.ศ. 1811 ของเขาซึ่งยังไม่ได้รับการตึพิมพ์ ในลักษณะดั้งเดิมโดยไม่มีการแก้ไข โดยแบ่งออกเป็น 2 ส่วนตีพิมพ์ใน บันทึกของราชบัณฑิตยสภาวิทยาศาสตร์แห่งสถาบันแห่งชาติฝรั่งเศส ในปี ค.ศ. 1824 และ ค.ศ. 1826
หลังจากนั้นในปี ค.ศ. 1829 โยฮันน์ ปีเตอร์ กุสตาฟ เลอเจิน ดีริชเลต์ นักคณิตศาสตร์ชาวเยอรมัน ได้แสดงบทพิสูจน์คุณสมบัติการลู่เข้าของอนุกรมฟูรีเย ซึ่งเป็นที่รู้จักกว้างขวางในปัจจุบัน
ข้อโต้แย้งต่าง ๆ
- สมการของลากรองจ์: นักคณิตศาสตร์บางคน ได้แสดงความเห็นว่า ควรจะถือว่าลากรองจ์นั้นเป็นผู้ค้นพบแรกเนื่องจาก อนุกรมของฟูรีเย นั้นสามารถหาได้จากสมการของลากรองจ์ ดังแสดงข้างต้น
- วิธีการหาสัมประสิทธิ์ของอนุกรมตรีโกณมิติ : ฟูรีเยนั้นไม่ได้เป็นคนแรกที่คิดค้นวิธีการหาค่าสัมประสิทธิ์ ของอนุกรมฟังก์ชันตริโกณมิติ บทความซึ่งเขียนโดย ออยเลอร์ ในปี ค.ศ. 1777 (ตีพิมพ์ ค.ศ. 1793) เขาได้ใช้วิธีในการหาค่าสัมประสิทธิ์ตัวที่ n ของอนุกรม
- โดยวิธีคูณด้วย และอินทิเกรตทีละเทอม จาก 0 ถึง π ได้
ถึงแม้ว่าทั้งสองจะได้นำเสนอรูปสมการที่เหมือน หรือ สามารถปรับให้เหมือนอนุกรมฟูรีเย ได้ แต่วิธีของทั้ง ลากรองจ์ และ ออยเลอร์ นั้นไม่ได้นำไปสู่ แนวความคิดของการแทนฟังก์ชันใด ๆ ด้วยอนุกรมฟังก์ชันตรีโกณมิติ ยิ่งไปกว่านั้นทั้งสองยังได้แสดงความคิดเห็นที่คัดค้านต่อแนวความคิดดังกล่าว สมการของลากรองจ์นั้นมีจุดประสงค์เพียงต้องการใช้ยืนยันผลคำตอบตามแนวความคิดของออยเลอร์ ส่วนวิธีการข้างต้นของออยเลอร์นั้นนำเสนอเพื่อใช้กับ อนุกรมฟังก์ชันตรีโกณมิติที่รู้แน่นอน ไม่ได้ใช้สำหรับการแทนฟังก์ชันทั่วไป ดังนั้นจึงตั้งชื่อเป็นเกียรติแก่ฟูรีเย ผู้ซึ่งให้กำเนิดแนวความคิด
- คุณสมบัติการลู่เข้า : โดยทั่วไปเรารับรู้ว่า ดีริชเลต์ เป็นบุคคลแรกที่พิสูจน์คุณสมบัติการลู่เข้าของอนุกรมฟูรีเย อย่างแม่นยำทางคณิตศาสตร์ ในปี ค.ศ. 1829 จึงอาจถือว่า เขาเป็นบุคคลแรกที่ยืนยันความถูกต้องของแนวความคิดของฟูรีเย
ฌอง กาสตง ดาบูซ์ (Jean Gaston Darboux) ในการรวบรวมผลงานของฟูรีเย ในปี ค.ศ. 1888 เขาได้พบต้นฉบับบทความของฟูรีเยปี ค.ศ. 1807 ซึ่งสาบสูญไปหลังจากที่ฟูรีเยเสียชีวิตลงในปี ค.ศ. 1830 ที่ห้องสมุดของ École Nationale des Ponts et Chaussées ในกรุงปารีส ซึ่งดาบูซ์ได้ชี้ว่าในบทความนั้น ฟูรีเยได้พิสูจน์คุณสมบัติการลู่เข้าของอนุกรม และวิธีการที่ฟูรีเยใช้จริง ๆ แล้วก็ไม่แตกต่างจากที่ ดีริชเลต์ ใช้ในการพิสูจน์ต่อมาในภายหลัง[2]