CD44

CD44
Молекулярная модель
Нинди таксонда бар H. sapiens[d][1]
Кодлаучы ген CD44[d][1]
Молекуляр функция collagen binding[d][2], связывание с белками плазмы[d][3][4][5][…], hyaluronic acid binding[d][6][7][8][…], cytokine receptor activity[d][9], transmembrane signaling receptor activity[d][10], cytokine receptor activity[d][11][10] һәм hyaluronic acid binding[d][12][13][14][…]
Күзәнәк компоненты мембрана өлеше[d][13][13], Гольджи аппараты[13], macrophage migration inhibitory factor receptor complex[d][9], мембрана[d][13], фокальные контакты[d][15], күзәнәк мембранасы[d][7][7][16][…], күзәнәк мембранасы өлеше[d][12], күзәнәк өслеге[d][17][18], экзосома[d][19][20][21], цитозоль[d][13], secretory granule membrane[d][13], apical plasma membrane[d][3], lamellipodium membrane[d][3], cell projection[d][16], күзәнәк мембранасы[d][13][13][3][…], Микроворсинка[d][13][13], фокальные контакты[d][22], basolateral plasma membrane[d][10], macrophage migration inhibitory factor receptor complex[d][11][10], cell projection[d][13][3] һәм экзосома[d][23][24][25]
Биологик процесс negative regulation of cysteine-type endopeptidase activity involved in apoptotic process[d][26], monocyte aggregation[d][27], positive regulation of heterotypic cell-cell adhesion[d][27], hyaluronan catabolic process[d][13][17], negative regulation of intrinsic apoptotic signaling pathway in response to DNA damage by p53 class mediator[d][11], interferon-gamma-mediated signaling pathway[d][13], extracellular matrix disassembly[d][13], extracellular matrix organization[d][13], негативная регуляция апоптоза[d][26], cellular response to fibroblast growth factor stimulus[d][28], positive regulation of peptidyl-serine phosphorylation[d][11], cartilage development[d][29], агрегация клеток[d][7][7], negative regulation of DNA damage response, signal transduction by p53 class mediator[d][11], positive regulation of ERK1 and ERK2 cascade[d][9], positive regulation of peptidyl-tyrosine phosphorylation[d][11], cell-matrix adhesion[d][30], positive regulation of monocyte aggregation[d][31], leukocyte migration[d][13], neutrophil degranulation[d][13], wound healing, spreading of cells[d][3], regulation of lamellipodium morphogenesis[d][3], cell-cell adhesion[d][30], воспалительная реакция[d][10], агрегация клеток[d][7][7][32], positive regulation of ERK1 and ERK2 cascade[d][11][10], агрегация клеток[d][13][13][33][…], миграция клеток[d][34] һәм T cell activation[d][35]
Изображение Gene Atlas
 CD44 Викиҗыентыкта

CD44 (ингл. ) — аксымы, шул ук исемдәге ген тарафыннан кодлана торган югары молекуляр органик матдә.[36][37]

Искәрмәләр

  1. 1,0 1,1 UniProt
  2. Gallatin W. M., Wayner E. A., Hoffman P. A. et al. Structural homology between lymphocyte receptors for high endothelium and class III extracellular matrix receptor // Proc. Natl. Acad. Sci. U.S.A. / M. R. Berenbaum[Washington, etc.], USA: National Academy of Sciences [etc.], 1989. — ISSN 0027-8424; 1091-6490doi:10.1073/PNAS.86.12.4654PMID:2471973
  3. 3,0 3,1 3,2 3,3 3,4 3,5 3,6 Jones G. E., Pérez-Gómez E., Megías D. Podoplanin associates with CD44 to promote directional cell migration // Mol. Biol. Cell,American Society for Cell Biology, 2010. — ISSN 1059-1524; 1939-4586; 1044-2030doi:10.1091/MBC.E10-06-0489PMID:20962267
  4. Ssadh H. A., Spencer P. S., Alabdulmenaim W. et al. Measurements of heterotypic associations between cluster of differentiation CD74 and CD44 in human breast cancer-derived cells // Oncotarget / M. BlagosklonnyImpact Journals LLC, 2017. — ISSN 1949-2553doi:10.18632/ONCOTARGET.20922PMID:29190904
  5. Hsu K., Tsai H., Lin P. et al. Clinical implication and mitotic effect of CD44 cleavage in relation to osteopontin/CD44 interaction and dysregulated cell cycle protein in gastrointestinal stromal tumor // Ann. Surg. Oncol. / K. M. McMastersSpringer Science+Business Media, 2010. — ISSN 1068-9265; 1534-4681doi:10.1245/S10434-010-0927-1PMID:20146103
  6. I Stamenkovic, A Aruffo, M Amiot et al. The hematopoietic and epithelial forms of CD44 are distinct polypeptides with different adhesion potentials for hyaluronate-bearing cells // EMBO J.NPG, 1991. — ISSN 0261-4189; 1460-2075doi:10.1002/(ISSN)1460-2075PMID:1991450
  7. 7,0 7,1 7,2 7,3 7,4 7,5 7,6 GOA
  8. Harada H., Takahashi M. CD44-dependent intracellular and extracellular catabolism of hyaluronic acid by hyaluronidase-1 and -2 // J. Biol. Chem. / L. M. GieraschBaltimore [etc.]: American Society for Biochemistry and Molecular Biology, 2007. — ISSN 0021-9258; 1083-351X; 1067-8816doi:10.1074/JBC.M608358200PMID:17170110
  9. 9,0 9,1 9,2 Bucala R., Wang T. CD44 is the signaling component of the macrophage migration inhibitory factor-CD74 receptor complex // ImmunityCell Press, Elsevier BV, 2006. — ISSN 1074-7613; 1097-4180doi:10.1016/J.IMMUNI.2006.08.020PMID:17045821
  10. 10,0 10,1 10,2 10,3 10,4 10,5 Livstone M. S., Thomas P. D., Lewis S. E. et al. Phylogenetic-based propagation of functional annotations within the Gene Ontology consortium // Brief. Bioinform.OUP, 2011. — ISSN 1467-5463; 1477-4054doi:10.1093/BIB/BBR042PMID:21873635
  11. 11,0 11,1 11,2 11,3 11,4 11,5 11,6 Bucala R., Wang T. CD44 is the signaling component of the macrophage migration inhibitory factor-CD74 receptor complex // ImmunityCell Press, Elsevier BV, 2006. — ISSN 1074-7613; 1097-4180doi:10.1016/J.IMMUNI.2006.08.020PMID:17045821
  12. 12,0 12,1 I Stamenkovic, A Aruffo, M Amiot et al. The hematopoietic and epithelial forms of CD44 are distinct polypeptides with different adhesion potentials for hyaluronate-bearing cells // EMBO J.NPG, 1991. — ISSN 0261-4189; 1460-2075doi:10.1002/(ISSN)1460-2075PMID:1991450
  13. 13,00 13,01 13,02 13,03 13,04 13,05 13,06 13,07 13,08 13,09 13,10 13,11 13,12 13,13 13,14 13,15 13,16 13,17 13,18 13,19 GOA
  14. Li L., Asteriou T., Bernert B. et al. Growth factor regulation of hyaluronan synthesis and degradation in human dermal fibroblasts: importance of hyaluronan for the mitogenic response of PDGF-BB // Biochem. J.London [etc.]: Portland Press, 2007. — ISSN 0264-6021; 1470-8728doi:10.1042/BJ20061757PMID:17324121
  15. Waterman C. Analysis of the myosin-II-responsive focal adhesion proteome reveals a role for β-Pix in negative regulation of focal adhesion maturation // Nat. Cell Biol.NPG, 2011. — ISSN 1465-7392; 1476-4679doi:10.1038/NCB2216PMID:21423176
  16. 16,0 16,1 Jones G. E., Pérez-Gómez E., Megías D. Podoplanin associates with CD44 to promote directional cell migration // Mol. Biol. Cell,American Society for Cell Biology, 2010. — ISSN 1059-1524; 1939-4586; 1044-2030doi:10.1091/MBC.E10-06-0489PMID:20962267
  17. 17,0 17,1 Harada H., Takahashi M. CD44-dependent intracellular and extracellular catabolism of hyaluronic acid by hyaluronidase-1 and -2 // J. Biol. Chem. / L. M. GieraschBaltimore [etc.]: American Society for Biochemistry and Molecular Biology, 2007. — ISSN 0021-9258; 1083-351X; 1067-8816doi:10.1074/JBC.M608358200PMID:17170110
  18. Ottoboni L., Meregalli M., Torrente Y. et al. VCAM-1 expression on dystrophic muscle vessels has a critical role in the recruitment of human blood-derived CD133+ stem cells after intra-arterial transplantation // BloodAmerican Society of Hematology, Elsevier BV, 2006. — ISSN 0006-4971; 1528-0020doi:10.1182/BLOOD-2006-04-018564PMID:16809613
  19. Gonzalez-Begne M., Lu B., Han X. et al. Proteomic analysis of human parotid gland exosomes by multidimensional protein identification technology (MudPIT) // J. Proteome Res. / J. YatesACS, 2009. — ISSN 1535-3893; 1535-3907doi:10.1021/PR800658CPMID:19199708
  20. Sinha A., Kislinger T. In-depth proteomic analyses of exosomes isolated from expressed prostatic secretions in urine // Proteomics / L. StimsonWiley, 2013. — ISSN 1615-9853; 1615-9861doi:10.1002/PMIC.201200561PMID:23533145
  21. Buschow S. I., Stoorvogel W., Wauben M. MHC class II-associated proteins in B-cell exosomes and potential functional implications for exosome biogenesis // Immunology & Cell BiologyWiley, 2010. — ISSN 0818-9641; 1440-1711doi:10.1038/ICB.2010.64PMID:20458337
  22. Waterman C. Analysis of the myosin-II-responsive focal adhesion proteome reveals a role for β-Pix in negative regulation of focal adhesion maturation // Nat. Cell Biol.NPG, 2011. — ISSN 1465-7392; 1476-4679doi:10.1038/NCB2216PMID:21423176
  23. Gonzalez-Begne M., Lu B., Han X. et al. Proteomic analysis of human parotid gland exosomes by multidimensional protein identification technology (MudPIT) // J. Proteome Res. / J. YatesACS, 2009. — ISSN 1535-3893; 1535-3907doi:10.1021/PR800658CPMID:19199708
  24. Buschow S. I., Stoorvogel W., Wauben M. MHC class II-associated proteins in B-cell exosomes and potential functional implications for exosome biogenesis // Immunology & Cell BiologyWiley, 2010. — ISSN 0818-9641; 1440-1711doi:10.1038/ICB.2010.64PMID:20458337
  25. Sinha A., Kislinger T. In-depth proteomic analyses of exosomes isolated from expressed prostatic secretions in urine // Proteomics / L. StimsonWiley, 2013. — ISSN 1615-9853; 1615-9861doi:10.1002/PMIC.201200561PMID:23533145
  26. 26,0 26,1 Lilly Y W Bourguignon, Xia W., Wong G. Hyaluronan-mediated CD44 interaction with p300 and SIRT1 regulates beta-catenin signaling and NFkappaB-specific transcription activity leading to MDR1 and Bcl-xL gene expression and chemoresistance in breast tumor cells // J. Biol. Chem. / L. M. GieraschBaltimore [etc.]: American Society for Biochemistry and Molecular Biology, 2009. — ISSN 0021-9258; 1083-351X; 1067-8816doi:10.1074/JBC.M806708200PMID:19047049
  27. 27,0 27,1 Selbi W., Motte C. d. l., Hascall V. et al. BMP-7 modulates hyaluronan-mediated proximal tubular cell-monocyte interaction // Journal of the American Society of Nephrology / J. BriggsAmerican Society of Nephrology, 2004. — ISSN 1046-6673; 1533-3450doi:10.1097/01.ASN.0000125619.27422.8EPMID:15100360
  28. Tzanakakis G. N. bFGF induces changes in hyaluronan synthase and hyaluronidase isoform expression and modulates the migration capacity of fibrosarcoma cells // Biochim. Biophys. ActaElsevier BV, 2009. — ISSN 0006-3002; 1878-2434doi:10.1016/J.BBAGEN.2009.06.013PMID:19577615
  29. Nicoll S. B., Barak O., Csóka A. B. et al. Hyaluronidases and CD44 undergo differential modulation during chondrogenesis // Biochem. Biophys. Res. Commun.Academic Press, Elsevier BV, 2002. — ISSN 0006-291X; 1090-2104doi:10.1006/BBRC.2002.6697PMID:11944887
  30. 30,0 30,1 E Shtivelman, Bishop J. M. Expression of CD44 is repressed in neuroblastoma cells // Mol. Cell. Biol.ASM, 1991. — ISSN 0270-7306; 1098-5549; 1067-8824doi:10.1128/MCB.11.11.5446PMID:1922057
  31. Vigetti D., Genasetti A., Karousou E. et al. Proinflammatory cytokines induce hyaluronan synthesis and monocyte adhesion in human endothelial cells through hyaluronan synthase 2 (HAS2) and the nuclear factor-kappaB (NF-kappaB) pathway // J. Biol. Chem. / L. M. GieraschBaltimore [etc.]: American Society for Biochemistry and Molecular Biology, 2010. — ISSN 0021-9258; 1083-351X; 1067-8816doi:10.1074/JBC.M110.134536PMID:20522558
  32. Livstone M. S., Thomas P. D., Lewis S. E. et al. Phylogenetic-based propagation of functional annotations within the Gene Ontology consortium // Brief. Bioinform.OUP, 2011. — ISSN 1467-5463; 1477-4054doi:10.1093/BIB/BBR042PMID:21873635
  33. Lalor P., Newsome P., Adams D. Adhesion of human haematopoietic (CD34+) stem cells to human liver compartments is integrin and CD44 dependent and modulated by CXCR3 and CXCR4 // Journal of HepatologyElsevier BV, 2009. — 16 p. — ISSN 0168-8278; 1600-0641doi:10.1016/J.JHEP.2009.06.021PMID:19703720
  34. Yoshida T., Matsuda Y., Naito Z. et al. CD44 in human glioma correlates with histopathological grade and cell migration // Pathology InternationalWiley-Blackwell, 2012. — ISSN 1320-5463; 1440-1827doi:10.1111/J.1440-1827.2012.02823.XPMID:22726066
  35. Funaro A., Malavasi F. Stimulation of T cells via CD44 requires leukocyte-function-associated antigen interactions and interleukin-2 production // Hum ImmunolElsevier BV, 1994. — ISSN 0198-8859; 1879-1166doi:10.1016/0198-8859(94)90026-4PMID:7528188
  36. HUGO Gene Nomenclature Commitee, HGNC:29223 (ингл.). әлеге чыганактан 2015-10-25 архивланды. 18 сентябрь, 2017 тикшерелгән.
  37. UniProt, Q9ULJ7 (ингл.). 18 сентябрь, 2017 тикшерелгән.

Чыганаклар

  • Степанов В.М. (2005). Молекулярная биология. Структура и функция белков. Москва: Наука. ISBN 5-211-04971-3.(рус.)
  • Bruce Alberts, Alexander Johnson, Julian Lewis, Martin Raff, Keith Roberts, Peter Walter (2002). Molecular Biology of the Cell (вид. 4th). Garland. ISBN 0815332181.(ингл.)