Extensión simple

En la teoría de cuerpos (una rama del álgebra), una extensión simple es una extensión de cuerpos de manera que L está generado por un solo elemento, al cual se lo denomina elemento primitivo. Dicho de otro modo, un elemento primitivo de una extensión de cuerpos L/K es un elemento ζ de L tal que

L = K(ζ),

o en otras palabras, L está generado por ζ sobre K. Esto significa que todo elemento de L puede ser escrito como cociente de dos polinomios en ζ con coeficientes en K.

Si la extensión L/K es simple (es decir, si admite un elemento primitivo), entonces L puede ser una extensión finita de K (caso en el que ζ es un elemento algebraico de L sobre K), o en cambio L es isomorfo al cuerpo de funciones racionales sobre K en una indeterminada (en este caso ζ es un elemento trascendente de L sobre K).

Construcción

Sean y dos cuerpos de manera que es extensión de . Se define la extensión generada por sobre como el conjunto

.

Así es exactamente el conjunto de los valores que se obtienen al evaluar en todas las funciones racionales definidas en .

Propiedades

  • es un subconjunto de :
Todo elemento de está también en , y como , si entonces . Si entonces es , y si , existe . Así pues, y es .
  • De hecho, es subcuerpo de .
Definimos las operaciones suma y producto en como las restricciones a de las operaciones del cuerpo de cocientes de , i.e., si , entonces:
.
Por ser un anillo y un cuerpo, es sencillo demostrar que la suma y el producto así definidos en son operaciones internas en .
Como es cuerpo, en particular es dominio de integridad, y por la Propiedad Universal del Cuerpo de Cocientes de un Dominio Íntegro, el cuerpo de cocientes de es (el menor cuerpo que contiene a es el propio ). Así se demuestra que , con las operaciones así definidas, es subcuerpo de .
  • es un subconjunto de
Para comprobar que , basta con tomar el cociente para cada (donde identificamos con el polinomio constante ). Además, como las operaciones en son las extensiones de las operaciones en , es inmediato que es subcuerpo de .
Tomando el polinomio , entonces es , luego .
Todo esto demuestra que es una extensión de y subcuerpo de .
  • Finalmente, es la menor extensión de que contiene a :
Sea ahora una extensión de de forma que . Como y , si , entonces , y como , entonces . Por último, como es cuerpo, si , entonces existe y , luego .
Queda entonces demostrado que es la menor extensión de que contiene a . A este proceso se le denomina a veces adjunción de un elemento a un cuerpo .

Observaciones

Una extensión simple puede ser algebraica o trascendente, dependiendo de si es un elemento algebraico o trascendente sobre . Si es trascendente, entonces el grado de la extensión es infinito. Si es algebraico, entonces el grado de la extensión es finito. En concreto, , siendo el polinomio mónico irreducible de sobre . Se deduce que toda extensión simple que sea algebraica es de grado finito.

Recíprocamente, si la extensión L/K admite un elemento primitivo, entonces L puede ser una extensión finita de K, caso en el que ζ es un elemento algebraico de L sobre K, o en cambio L es isomorfo al cuerpo de funciones racionales sobre K en una indeterminada, en este caso ζ es un elemento trascendente de L sobre K.

Teorema del elemento primitivo

El teorema del elemento primitivo responde a la pregunta de qué extensiones finitas de cuerpos tienen elementos primitivos, es decir, son simples. Por ejemplo, no es obvio que si se junta al cuerpo Q de números racionales las raíces de los siguientes polinomios

X2 − 2

y

X2 − 3,

llamadas α y β respectivamente, para obtener un cuerpo K = Q(α, β) de grado 4 sobre Q, donde K es Q(γ) para un elemento primitivo γ. De hecho, se puede ver que

γ = α + β

Las potencias de γi para 0 ≤ i ≤ 3 pueden ser expresadas como combinación lineal de 1, α, β y αβ a coeficientes enteros. Tomando dichas igualdades como un sistema lineal de ecuaciones, se puede resolver para α y β sobre Q(γ), la cual cosa implica que dicha elección de γ es en realidad un elemento primitivo en este ejemplo.

Enunciado

En general, el teorema del elemento primitivo se enuncia de la siguiente forma:

La extensión de cuerpo L/K es finita y tiene un elemento primitivo si y solo si hay un número finito de subextensiones de cuerpos F con KFL.

Consecuencias

Un importante corolario de dicho teorema afirma:

Toda extensión separable finita L/K tiene un elemento primitivo.

Dicho corolario es aplicable al ejemplo expuesto más arriba (y a muchos similares), ya que Q tiene característica 0 por lo que toda extensión finita sobre Q es separable.

Para extensiones inseparables (o no separables), se puede afirmar lo siguiente:

Si el grado de la extensión [L:K] es un número primo, entonces L/K tiene un elemento primitivo.

Si el grado de la extensión no es un número primo y la extensión no es separable, se pueden encontrar contraejemplos. Por ejemplo, si K es Fp(T,U), el cuerpo de las funciones racionales con dos indeterminadas T y U sobre el cuerpo finito con p elementos, y L se obtiene a partir de K adjuntando una raíz pesima de T, y de U, entonces no existe ningún elemento primitivo de L sobre K. De hecho se puede ver que para cualquier α en L, el elemento αp pertenece a K. Además tenemos que [L:K] = p2 pero no existen elementos de L con grado p2 sobre K, como un elemento primitivo debería tener.

Véase también

Enlaces externos