Nablaoperatorn
Nablaoperatorn är en differentialoperator , betecknad med symbolen ∇, som används inom vektoranalysen . Symbolen är ett kortare och bekvämare tecken för den vektorlika operatorn (i tre dimensioner med kartesiska koordinater):
(
∂
∂
x
,
∂
∂
y
,
∂
∂
z
)
{\displaystyle \left({\cfrac {\partial }{\partial x},{\cfrac {\partial }{\partial y},{\cfrac {\partial }{\partial z}\right)}
Symbolen introducerades av William Rowan Hamilton . Namnet nabla kommer från ett hebreiskt stränginstrument med liknande form.
Operatorn kan appliceras på skalärfält (φ) eller vektorfält (F = (F x , F y , F z )), för att ge
∇
ϕ
=
(
∂
ϕ
∂
x
,
∂
ϕ
∂
y
,
∂
ϕ
∂
z
)
{\displaystyle \nabla \phi =\left({\frac {\partial \phi }{\partial x},{\frac {\partial \phi }{\partial y},{\frac {\partial \phi }{\partial z}\right)}
∇
⋅
F
=
∂
F
x
∂
x
+
∂
F
y
∂
y
+
∂
F
z
∂
z
{\displaystyle \nabla \cdot \mathbf {F} ={\frac {\partial F_{x}{\partial x}+{\frac {\partial F_{y}{\partial y}+{\frac {\partial F_{z}{\partial z}
∇
×
F
=
|
e
x
e
y
e
z
∂
∂
x
∂
∂
y
∂
∂
z
F
x
F
y
F
z
|
=
(
∂
F
z
∂
y
−
∂
F
y
∂
z
,
∂
F
x
∂
z
−
∂
F
z
∂
x
,
∂
F
y
∂
x
−
∂
F
x
∂
y
)
{\displaystyle \nabla \times \mathbf {F} =\left\vert {\begin{matrix}e_{x}&e_{y}&e_{z}\\{\frac {\partial }{\partial x}&{\frac {\partial }{\partial y}&{\frac {\partial }{\partial z}\\F_{x}&F_{y}&F_{z}\end{matrix}\right\vert =\left({\frac {\partial F_{z}{\partial y}-{\frac {\partial F_{y}{\partial z},{\frac {\partial F_{x}{\partial z}-{\frac {\partial F_{z}{\partial x},{\frac {\partial F_{y}{\partial x}-{\frac {\partial F_{x}{\partial y}\right)}
Om man kombinerar gradient och divergens får man Laplaceoperatorn , vilken betecknas med nablaoperatorn i kvadrat, ∇2 alternativt Δ:
Δ
ϕ
=
∇
2
ϕ
=
∇
⋅
∇
ϕ
=
∂
2
ϕ
∂
x
2
+
∂
2
ϕ
∂
y
2
+
∂
2
ϕ
∂
z
2
{\displaystyle \Delta \phi =\nabla ^{2}\phi =\nabla \cdot \nabla \phi ={\frac {\partial ^{2}\phi }{\partial x^{2}+{\frac {\partial ^{2}\phi }{\partial y^{2}+{\frac {\partial ^{2}\phi }{\partial z^{2}
Samt för vektorfält:
Δ
F
=
∇
2
F
=
∇
(
∇
⋅
F
)
−
∇
×
(
∇
×
F
)
{\displaystyle \Delta \mathbf {F} =\nabla ^{2}\mathbf {F} =\nabla (\nabla \cdot \mathbf {F} )-\nabla \times (\nabla \times \mathbf {F} )}
Räkneregler
Genom att tolka nablaoperatorn som en vektor och använda räkneregler för vektorprodukter går det att visa att
∇
×
(
∇
ϕ
)
=
0
{\displaystyle \nabla \times (\nabla \phi )=\mathbf {0} }
∇
×
∇
=
0
{\displaystyle \nabla \times \nabla =\mathbf {0} }
Produktregler
∇
(
f
g
)
=
f
∇
g
+
g
∇
f
∇
(
u
→
⋅
v
→
)
=
u
→
×
(
∇
×
v
→
)
+
v
→
×
(
∇
×
u
→
)
+
(
u
→
⋅
∇
)
v
→
+
(
v
→
⋅
∇
)
u
→
∇
⋅
(
f
v
→
)
=
f
(
∇
⋅
v
→
)
+
v
→
⋅
(
∇
f
)
∇
⋅
(
u
→
×
v
→
)
=
v
→
⋅
(
∇
×
u
→
)
−
u
→
⋅
(
∇
×
v
→
)
∇
×
(
f
v
→
)
=
(
∇
f
)
×
v
→
+
f
(
∇
×
v
→
)
∇
×
(
u
→
×
v
→
)
=
u
→
(
∇
⋅
v
→
)
−
v
→
(
∇
⋅
u
→
)
+
(
v
→
⋅
∇
)
u
→
−
(
u
→
⋅
∇
)
v
→
{\displaystyle {\begin{aligned}\nabla (fg)&=f\nabla g+g\nabla f\\\nabla ({\vec {u}\cdot {\vec {v})&={\vec {u}\times (\nabla \times {\vec {v})+{\vec {v}\times (\nabla \times {\vec {u})+({\vec {u}\cdot \nabla ){\vec {v}+({\vec {v}\cdot \nabla ){\vec {u}\\\nabla \cdot (f{\vec {v})&=f(\nabla \cdot {\vec {v})+{\vec {v}\cdot (\nabla f)\\\nabla \cdot ({\vec {u}\times {\vec {v})&={\vec {v}\cdot (\nabla \times {\vec {u})-{\vec {u}\cdot (\nabla \times {\vec {v})\\\nabla \times (f{\vec {v})&=(\nabla f)\times {\vec {v}+f(\nabla \times {\vec {v})\\\nabla \times ({\vec {u}\times {\vec {v})&={\vec {u}\,(\nabla \cdot {\vec {v})-{\vec {v}\,(\nabla \cdot {\vec {u})+({\vec {v}\cdot \nabla )\,{\vec {u}-({\vec {u}\cdot \nabla )\,{\vec {v}\end{aligned}
Se även
The article is a derivative under the Creative Commons Attribution-ShareAlike License .
A link to the original article can be found here and attribution parties here
By using this site, you agree to the Terms of Use . Gpedia ® is a registered trademark of the Cyberajah Pty Ltd