Нерівність Юнга в математиці формулюється так: для будь-яких дійсних чисел і таких, що справедливо:
- .
Нерівність названа на честь англійського математика Вільяма Юнга.
Доведення
Для чи нерівність очевидна. Для , нерівність випливає з опуклості логарифмічної функції: для будь-яких ,
.
Взявши в даній нерівності одержимо, що
,
- і остаточно нерівність Юнга одержується за допомогою експоненціювання.
Див. також
Джерела
|
---|
Середнє | |
---|
Геометрія | |
---|
Теорія ймовірностей та мат. статистика | |
---|
Теореми | |
---|
Нерівності | |
---|