Стодвадцятикомірник
Стодвадцятикомірник | |
---|---|
Діаграма Шлегеля: проєкція (перспектива) стодвадцятикомірника в тривимірний простір | |
Тип | Правильний чотиривимірний політоп |
Символ Шлефлі | {5,3,3} |
Комірок | 120 |
Граней | 720 |
Ребер | 1200 |
Вершин | 600 |
Вершинна фігура | Правильний тетраедр |
Двоїстий політоп | Шестисоткомірник |
Пра́вильний стодвадцятикомі́рник, або просто стодвадцятикомі́рник[1] — один із шести правильних багатокомірників у чотиривимірному просторі. Відомий також під іншими назвами: гекатонікосахор (від дав.-гр. ἑκατόν — «сто», εἴκοσι — «двадцять» і χώρος — «місце, простір»), гіпердодекае́др (оскільки є чотиривимірним аналогом додекаедра), додекаплекс (тобто «комплекс додекаедрів»), полідодека́едр. Двоїстий шестисоткомірнику.
Відкрив Людвіг Шлефлі в середині 1850-х років[2]. Символ Шлефлі стодвадцятикомірника — {5,3,3}.
Усі 9 його зірчастих форм — правильні зірчасті багатокомірники. З 10 правильних зірчастих багатокомірників лише один не є зірчастою формою стодвадцятикомірника.
Опис
Обмежений 120 тривимірними комірками — однаковими додекаедрами. Кут між двома суміжними комірками дорівнює рівно .
Його 720 двовимірних граней — однакові правильні п'ятикутники. Кожна грань відокремлює 2 комірки, що прилягають до неї.
Має 1200 ребер однакової довжини. На кожному ребрі сходяться по 3 грані та по 3 комірки.
Має 600 вершин. У кожній вершині сходяться по 4 ребра, по 6 граней та по 4 комірки.
В координатах
Стодвадцятикомірник можна розмістити в декартовій системі координат так, щоб:
- координати 24 його вершин були різноманітними перестановками чисел
- координати 64 вершин — різноманітними перестановками
- координати 64 вершин — різноманітними перестановками де — відношення золотого перетину;
- координати 64 вершин — різноманітними перестановками
- координати 96 вершин — різноманітними парними перестановками
- координати 96 вершин — різноманітними парними перестановками
- координати решти 192 вершин — різноманітними парними перестановками
Початок координат буде при цьому центром симетрії багатокомірника, а також центром його вписаної, описаної та напівуписаних тривимірних гіперсфер.
Проєкція обертового стодвадцятикомірника в тривимірний простір
Ортогональні проєкції на площину
Метричні характеристики
Якщо стодвадцятикомірник має ребро довжини то його чотиривимірний гіпероб'єм і тривимірна гіперплоща поверхні виражаються відповідно як
Радіус описаної тривимірної гіперсфери (що проходить через усі вершини багатокомірника) при цьому дорівнюватиме.
радіус зовнішньої напівуписаної гіперсфери (що дотикається до всіх ребер у їхніх серединах)
радіус внутрішньої напівуписаної гіперсфери (що дотикається до всіх граней у їхніх центрах)
радіус уписаної гіперсфери (що дотикається до всіх комірок у їхніх центрах)
Примітки
- ↑ Д. К. Бобылёв. Четырехмерное пространство // Энциклопедический словарь Брокгауза и Ефрона : в 86 т. (82 т. и 4 доп. т.). — СПб., 1890—1907. (рос. дореф.)
- ↑ George Olshevsky. Hecatonicosachoron // Glossary for Hyperspace.
Посилання
- Weisstein, Eric W. Стодвадцятикомірник(англ.) на сайті Wolfram MathWorld.
- Побудова стодвадцятикомірника на YouTube
- Главы 3 и 4: Четвертое измерение. Dimensions (російською) . dimensions-math.org. Архів оригіналу за 4 березня 2015.
Основні опуклі правильні й однорідні політопи в розмірностях 2-10 | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Родина | An | Bn | I₂(p) / Dn | E₆ / E₇ / E₈ / F₄ / G₂ | Hn | |||||||
Правильний многокутник | Правильний трикутник | Квадрат | p-кутник | Правильний шестикутник | Правильний п'ятикутник | |||||||
Однорідний многогранник | Правильний тетраедр | Правильний октаедр • Куб | Півкуб | Правильний додекаедр • Правильний ікосаедр | ||||||||
Однорідний 4-політоп | П'ятикомірник | 16-комірник • Тесеракт | Півтесеракт | 24-комірник | 120-комірник • 600-комірник | |||||||
Однорідний 5-політоп | Правильний 5-симплекс | 5-ортоплекс • 5-гіперкуб | 5-півгіперкуб | |||||||||
Однорідний 6-політоп | Правильний 6-симплекс | 6-ортоплекс • 6-гіперкуб | 6-півгіперкуб | 122 • 221 | ||||||||
Однорідний 7-політоп | Правильний 7-симплекс | 7-ортоплекс • 7-гіперкуб | 7-півгіперкуб | 132 • 231 • 321 | ||||||||
Однорідний 8-політоп | Правильний 8-симплекс | 8-ортоплекс • 8-гіперкуб | 8-півгіперкуб | 142 • 241 • 421 | ||||||||
Однорідний 9-політоп | Правильний 9-симплекс | 9-ортоплекс • 9-гіперкуб | 9-півгіперкуб | |||||||||
Однорідний 10-політоп | Правильний 10-симплекс | 10-ортоплекс • 10-гіперкуб | 10-півгіперкуб | |||||||||
Однорідний n-політоп | Правильный n-симплекс | n-ортоплекс • n-гіперкуб | n-півгіперкуб | 1k2 • 2k1 • k21 | n-п'ятикутний многогранник | |||||||
Topics: Родини політопів • Правильні політопи • Список правильних політопів і з'єднань |