Home
Random Article
Read on Wikipedia
Edit
History
Talk Page
Print
Download PDF
zh
34 other languages
指数函数积分表
以下是部分指數函數的積分表(书写时省略了不定积分结果中都含有的任意常数Cn)
∫
e
c
x
d
x
=
1
c
e
c
x
{\displaystyle \int e^{cx}\;dx={\frac {1}{c}e^{cx}
∫
a
c
x
d
x
=
1
c
ln
a
a
c
x
(
a
>
0
,
a
≠
1
)
{\displaystyle \int a^{cx}\;dx={\frac {1}{c\ln a}a^{cx}\qquad \qquad {\mbox{(}a>0,{\mbox{ }a\neq 1{\mbox{)}
∫
x
e
c
x
d
x
=
e
c
x
c
2
(
c
x
−
1
)
{\displaystyle \int xe^{cx}\;dx={\frac {e^{cx}{c^{2}(cx-1)}
∫
x
2
e
c
x
d
x
=
e
c
x
(
x
2
c
−
2
x
c
2
+
2
c
3
)
{\displaystyle \int x^{2}e^{cx}\;dx=e^{cx}\left({\frac {x^{2}{c}-{\frac {2x}{c^{2}+{\frac {2}{c^{3}\right)}
∫
x
n
e
c
x
d
x
=
1
c
x
n
e
c
x
−
n
c
∫
x
n
−
1
e
c
x
d
x
{\displaystyle \int x^{n}e^{cx}\;dx={\frac {1}{c}x^{n}e^{cx}-{\frac {n}{c}\int x^{n-1}e^{cx}dx}
∫
e
c
x
d
x
x
=
ln
|
x
|
+
∑
i
=
1
∞
(
c
x
)
i
i
⋅
i
!
{\displaystyle \int {\frac {e^{cx}\;dx}{x}=\ln |x|+\sum _{i=1}^{\infty }{\frac {(cx)^{i}{i\cdot i!}
∫
e
c
x
d
x
x
n
=
1
n
−
1
(
−
e
c
x
x
n
−
1
+
c
∫
e
c
x
x
n
−
1
d
x
)
(
n
≠
1
)
{\displaystyle \int {\frac {e^{cx}\;dx}{x^{n}={\frac {1}{n-1}\left(-{\frac {e^{cx}{x^{n-1}+c\int {\frac {e^{cx}{x^{n-1}\,dx\right)\qquad \qquad {\mbox{(}n\neq 1{\mbox{)}
∫
e
c
x
ln
x
d
x
=
1
c
e
c
x
ln
|
x
|
−
Ei
(
c
x
)
{\displaystyle \int e^{cx}\ln x\;dx={\frac {1}{c}e^{cx}\ln |x|-\operatorname {Ei} \,(cx)}
∫
e
c
x
sin
b
x
d
x
=
e
c
x
c
2
+
b
2
(
c
sin
b
x
−
b
cos
b
x
)
{\displaystyle \int e^{cx}\sin bx\;dx={\frac {e^{cx}{c^{2}+b^{2}(c\sin bx-b\cos bx)}
∫
e
c
x
cos
b
x
d
x
=
e
c
x
c
2
+
b
2
(
c
cos
b
x
+
b
sin
b
x
)
{\displaystyle \int e^{cx}\cos bx\;dx={\frac {e^{cx}{c^{2}+b^{2}(c\cos bx+b\sin bx)}
∫
e
c
x
sin
n
x
d
x
=
e
c
x
sin
n
−
1
x
c
2
+
n
2
(
c
sin
x
−
n
cos
x
)
+
n
(
n
−
1
)
c
2
+
n
2
∫
e
c
x
sin
n
−
2
x
d
x
{\displaystyle \int e^{cx}\sin ^{n}x\;dx={\frac {e^{cx}\sin ^{n-1}x}{c^{2}+n^{2}(c\sin x-n\cos x)+{\frac {n(n-1)}{c^{2}+n^{2}\int e^{cx}\sin ^{n-2}x\;dx}
∫
e
c
x
cos
n
x
d
x
=
e
c
x
cos
n
−
1
x
c
2
+
n
2
(
c
cos
x
+
n
sin
x
)
+
n
(
n
−
1
)
c
2
+
n
2
∫
e
c
x
cos
n
−
2
x
d
x
{\displaystyle \int e^{cx}\cos ^{n}x\;dx={\frac {e^{cx}\cos ^{n-1}x}{c^{2}+n^{2}(c\cos x+n\sin x)+{\frac {n(n-1)}{c^{2}+n^{2}\int e^{cx}\cos ^{n-2}x\;dx}
∫
x
e
c
x
2
d
x
=
1
2
c
e
c
x
2
{\displaystyle \int xe^{cx^{2}\;dx={\frac {1}{2c}\;e^{cx^{2}
∫
1
σ
2
π
e
−
(
x
−
μ
)
2
2
σ
2
d
x
=
1
2
σ
(
1
+
erf
x
−
μ
σ
2
)
{\displaystyle \int {1 \over \sigma {\sqrt {2\pi }\,e^{-{\frac {(x-\mu )^{2}{2\sigma ^{2}\;dx={\frac {1}{2\sigma }\left(1+{\mbox{erf}\,{\frac {x-\mu }{\sigma {\sqrt {2}\right)}
∫
e
x
2
d
x
=
∑
n
=
0
∞
x
2
n
+
1
n
!
(
2
n
+
1
)
{\displaystyle \int e^{x^{2}\,dx=\sum _{n=0}^{\infty }{\frac {x^{2n+1}{n!(2n+1)}
∫
−
∞
∞
e
−
a
x
2
d
x
=
π
a
{\displaystyle \int _{-\infty }^{\infty }e^{-ax^{2}\,dx={\sqrt {\pi \over a}
(
高斯积分
)
∫
0
∞
x
2
n
e
−
x
2
a
2
d
x
=
π
(
2
n
)
!
n
!
(
a
2
)
2
n
+
1
{\displaystyle \int _{0}^{\infty }x^{2n}e^{-{\frac {x^{2}{a^{2}\,dx={\sqrt {\pi }{(2n)! \over {n!}{\left({\frac {a}{2}\right)}^{2n+1}
查
论
编
积分表
有理函數
無理函數
三角函數
反三角函數
雙曲函數
反雙曲函數
指數函數
對數函數
高斯函數