Popis integrala eksponencijalnih funkcija
Slijedi popis integrala (antiderivacija funkcija) eksponencijalnih funkcija. Za potpun popis integrala funkcija, pogledati tablica integrala i popis integrala.
, ali ![{\displaystyle \int e^{2x}\;dx=2e^{2x}+C}](https://wikimedia.org/api/rest_v1/media/math/render/svg/7acf1b6f1d20770c854cbe3861ea23b07eb7b2fb)
![{\displaystyle \int a^{cx}\;dx={\frac {1}{c\ln a}a^{cx}+C\qquad {\mbox{(za }a>0,{\mbox{ }a\neq 1{\mbox{)}](https://wikimedia.org/api/rest_v1/media/math/render/svg/b01876140f3c40b60d93b01796532197950b3013)
![{\displaystyle \int xe^{cx}\;dx={\frac {e^{cx}{c^{2}(cx-1)+C}](https://wikimedia.org/api/rest_v1/media/math/render/svg/222be7594266ff3bc9c16056966d5d3c8d0b7ede)
![{\displaystyle \int x^{2}e^{cx}\;dx=e^{cx}\left({\frac {x^{2}{c}-{\frac {2x}{c^{2}+{\frac {2}{c^{3}\right)+C}](https://wikimedia.org/api/rest_v1/media/math/render/svg/6d56b1c80dbc489f7c84e257374303344a0e55c7)
![{\displaystyle \int x^{n}e^{cx}\;dx={\frac {1}{c}x^{n}e^{cx}-{\frac {n}{c}\int x^{n-1}e^{cx}dx+C}](https://wikimedia.org/api/rest_v1/media/math/render/svg/e588b858eda4fa4c20311f3a8344de123398d4de)
![{\displaystyle \int {\frac {e^{cx}{x}\;dx=\ln |x|+\sum _{i=1}^{\infty }{\frac {(cx)^{i}{i\cdot i!}+C}](https://wikimedia.org/api/rest_v1/media/math/render/svg/21340a87db276462549b58eca363966ac564e9cc)
![{\displaystyle \int {\frac {e^{cx}{x^{n}\;dx={\frac {1}{n-1}\left(-{\frac {e^{cx}{x^{n-1}+c\int {\frac {e^{cx}{x^{n-1}\,dx\right)+C\qquad {\mbox{(za }n\neq 1{\mbox{)}](https://wikimedia.org/api/rest_v1/media/math/render/svg/5b19cbe5cb163f11e3c888a490b23b7737b6df22)
![{\displaystyle \int e^{cx}\ln x\;dx={\frac {1}{c}e^{cx}\ln |x|-\operatorname {Ei} \,(cx)+C}](https://wikimedia.org/api/rest_v1/media/math/render/svg/b8a0e0bbbb7c5e4aee9a19c6c5097d2af936e0e8)
![{\displaystyle \int e^{cx}\sin bx\;dx={\frac {e^{cx}{c^{2}+b^{2}(c\sin bx-b\cos bx)+C}](https://wikimedia.org/api/rest_v1/media/math/render/svg/3a89524f25659f60ff8d2aec9033fe6040475692)
![{\displaystyle \int e^{cx}\cos bx\;dx={\frac {e^{cx}{c^{2}+b^{2}(c\cos bx+b\sin bx)+C}](https://wikimedia.org/api/rest_v1/media/math/render/svg/17feacf41ac2d00911057368a8910c0c8209010a)
![{\displaystyle \int e^{cx}\sin ^{n}x\;dx={\frac {e^{cx}\sin ^{n-1}x}{c^{2}+n^{2}(c\sin x-n\cos x)+{\frac {n(n-1)}{c^{2}+n^{2}\int e^{cx}\sin ^{n-2}x\;dx+C}](https://wikimedia.org/api/rest_v1/media/math/render/svg/51c949e7cee1b752f09d3bd0fbcb694da50f4b8c)
![{\displaystyle \int e^{cx}\cos ^{n}x\;dx={\frac {e^{cx}\cos ^{n-1}x}{c^{2}+n^{2}(c\cos x+n\sin x)+{\frac {n(n-1)}{c^{2}+n^{2}\int e^{cx}\cos ^{n-2}x\;dx+C}](https://wikimedia.org/api/rest_v1/media/math/render/svg/d22e28d211fb4b5e75a96e0c26fdfb3a1e3ef8e8)
![{\displaystyle \int xe^{cx^{2}\;dx={\frac {1}{2c}\;e^{cx^{2}+C}](https://wikimedia.org/api/rest_v1/media/math/render/svg/84c093fc04503c3cc314d327353b3feef6346ee2)
(
je funkcija grješke (error function))
![{\displaystyle \int xe^{-cx^{2}\;dx=-{\frac {1}{2c}e^{-cx^{2}+C}](https://wikimedia.org/api/rest_v1/media/math/render/svg/36a7ad5511d962fc66f51062427ff4b158f093f0)
![{\displaystyle \int {1 \over \sigma {\sqrt {2\pi }\,e^{-{(x-\mu )^{2}/2\sigma ^{2}\;dx={\frac {1}{2}(1+{\mbox{erf}\,{\frac {x-\mu }{\sigma {\sqrt {2})+C}](https://wikimedia.org/api/rest_v1/media/math/render/svg/46d84edb2464f40f5beac824a9d77a18b391b8e7)
- pri čemu je
![{\displaystyle c_{2j}={\frac {1\cdot 3\cdot 5\cdots (2j-1)}{2^{j+1}={\frac {(2j)\,!}{j!\,2^{2j+1}\ .}](https://wikimedia.org/api/rest_v1/media/math/render/svg/90dd5e5695126e16ae330b936f2ae1abc90fcf3a)
Određeni integrali
(Gaussov integral)
![{\displaystyle \int _{-\infty }^{\infty }e^{-ax^{2}\,dx={\sqrt {\pi \over a}\quad (a>0)}](https://wikimedia.org/api/rest_v1/media/math/render/svg/d173c3a0a51d1491a0c0ccb21456ec842d991df1)
![{\displaystyle \int _{-\infty }^{\infty }e^{-ax^{2}e^{2bx}\,dx={\sqrt {\frac {\pi }{a}e^{\frac {b^{2}{a}\quad (a>0)}](https://wikimedia.org/api/rest_v1/media/math/render/svg/81a377ff06dee538239ee1a04e326ccbb2335231)
![{\displaystyle \int _{-\infty }^{\infty }xe^{-a(x-b)^{2}\,dx=b{\sqrt {\pi \over a}\quad (a>0)}](https://wikimedia.org/api/rest_v1/media/math/render/svg/192453db1fb4691126e316dcd81ef42be04f0205)
![{\displaystyle \int _{-\infty }^{\infty }x^{2}e^{-ax^{2}\,dx={\frac {1}{2}{\sqrt {\pi \over a^{3}\quad (a>0)}](https://wikimedia.org/api/rest_v1/media/math/render/svg/bdc40a04ccfabe052e1faa2b0bc367c3b712a21c)
(!! je dvostruka faktorijela)
![{\displaystyle \int _{0}^{\infty }x^{n}e^{-ax}\,dx={\begin{cases}{\frac {\Gamma (n+1)}{a^{n+1}&(n>-1,a>0)\\{\frac {n!}{a^{n+1}&(n=0,1,2,\ldots ,a>0)\\\end{cases}](https://wikimedia.org/api/rest_v1/media/math/render/svg/234d4f9a806812d4454fa8fcb2b1335dd17d6fb7)
![{\displaystyle \int _{0}^{\infty }e^{-ax}\sin bx\,dx={\frac {b}{a^{2}+b^{2}\quad (a>0)}](https://wikimedia.org/api/rest_v1/media/math/render/svg/10f8d0c56030576a9ea5c32fdcc26da56cf84bc7)
![{\displaystyle \int _{0}^{\infty }e^{-ax}\cos bx\,dx={\frac {a}{a^{2}+b^{2}\quad (a>0)}](https://wikimedia.org/api/rest_v1/media/math/render/svg/a4ecb94f832c0bd6d7d22c0d1a6a0a2d05f982f9)
![{\displaystyle \int _{0}^{\infty }xe^{-ax}\sin bx\,dx={\frac {2ab}{(a^{2}+b^{2})^{2}\quad (a>0)}](https://wikimedia.org/api/rest_v1/media/math/render/svg/4364f14319b127a45b9e81e92c7777ba6a850e2a)
![{\displaystyle \int _{0}^{\infty }xe^{-ax}\cos bx\,dx={\frac {a^{2}-b^{2}{(a^{2}+b^{2})^{2}\quad (a>0)}](https://wikimedia.org/api/rest_v1/media/math/render/svg/d93ccc76421b3d124dcedd0972c92a9769063658)
(
je modificirana Besselova funkcija prve vrste)
![{\displaystyle \int _{0}^{2\pi }e^{x\cos \theta +y\sin \theta }d\theta =2\pi I_{0}\left({\sqrt {x^{2}+y^{2}\right)}](https://wikimedia.org/api/rest_v1/media/math/render/svg/8cc7da0077239149468cbcc5eb3576109c8d0d4d)