Choán-tì kap ho̍k-kiōng-taⁿ ê ha̍p-sêng hâng-lia̍t ián-sǹg.Pang-bô͘:SHORTDESC:Choán-tì kap ho̍k-kiōng-taⁿ ê ha̍p-sêng hâng-lia̍t ián-sǹg.
"Adjoint" choán koè chia. Chhōe î-im-chú ê choán-tì, khòaⁿ kun-tòe hâng-lia̍t.
Kiōng-tam choán-tì (Hàn-jī: 共擔轉置, Eng-gí: conjugate transpose) sī chiam-tùi hâng-lia̍t ê chi̍t chióng chhau-chok, kán-tan lâi kóng, i pau-hâm chi̍t pái ho̍k-kiōng-tam kap chi̍t pái choán-tì.
Kì-hō kap tēng-gī
Kì-hō
Chi̍t ê ho̍k hâng-lia̍t
ê kiōng-tam choán-tì, kì-hō ū chiok chē chióng:
- Tī sòaⁿ-sèng tāi-sò͘ tiong, tiāⁿ-tiāⁿ ē siá-chò
ia̍h-sī
.[1][2]
- Tī liōng-chú le̍k-ha̍k tiong, tiāⁿ-tiāⁿ ē siá-chò
, ēng Eng-gí tha̍k-chò “A dagger”.[3]
- Ū sî-chūn ē siá-chò
, sui-jiân-kóng chit ê hû-hō khah chia̍p sī piáu-sī Moore–Penrose pseudoinverse.
Tēng-gī
ê kiōng-tam choán-tì lán ē-sái án-ne lâi tēng-gī:
kî-tiong iàu-sò͘
téng-koân chi̍t hoâiⁿ ê ì-sù sī
ê ho̍k-kiōng-tam.
Lē
Ká-sú-kóng lán beh kè-sǹg hâng-lia̍t

ê kiōng-tam choán-tì, lán tio̍h seng sǹg i ê choán-tì:

koh sǹg i ê ho̍k-kiōng-tam:

Miâ-chheng
Chia-ê mài-chheng ì-sù chha-put-to lóng sio-kâng:
Sèng-chit
- Si̍t hâng-lia̍t
ê kiōng-tam choán-tì tiō sī i ê choán-tì:
.
- Tùi jīm-hô nn̄g ê pêⁿ-tōa ê hâng-lia̍t
kap
, lán ū
.
- Tùi jīm-hô ho̍k-cha̍p-sò͘
kap jīm-hô
hâng-lia̍t
, lán ū
.
- Tùi jīm-hô
hâng-lia̍t
kap jīm-hô
hâng-lia̍t
, lán ū
. Ài chù-ì, sūn-sī tian-tò-péng ·ah.
- Tùi jīm-hô
hâng-lia̍t
, lán ū
, i.e. kiōng-tam choán-tì sī chi̍t chióng tùi-ha̍p.
Chham-khó khu-liáu
- ↑ “conjugate transpose”. planetmath.org. [2020-09-08].
- ↑ 2.0 2.1 2.2 Friedberg, S., Insel, A. & Spence, L. (2018). Linear Algebra (5th Edition). Pearson. ISBN 978-0134860244.
- ↑ 3.0 3.1 Shankar, R. (2012). Principles of Quantum Mechanics (2nd Edition). Springer.
|
---|
| Liân-li̍p sòaⁿ-sèng hong-têng-sek |
- Gauss siau-tû-hoat
- Kramer kong-sek
- Gauss–Seidel hong-hoat
- Jacobi hong-hoat
| |
---|
| Hiòng-liōng |
- Sòaⁿ-sèng to̍k-li̍p
- Sòaⁿ-sèng cho͘-ha̍p
- Hiòng-liōng tâu-iáⁿ
- Ki-té
- Siang-tùi ki-té
|
---|
| Hiòng-liōng khong-kan |
- Siang-tùi khong-kan
- Chú-khong-kan
- Hu̍t khong-kan
- Kò͘-iú khong-kan
- Kong-gī kò͘-iú khong-kan
- Sòaⁿ-sèng thí-khui
- Hâng khong-kan
- Lia̍t khong-kan
- Chhù-goân
|
---|
| Lāi-chek khong-kan |
- Tiám-chek
- Cauchy–Schwarz put-téng-sek
- Ti̍t-kau
- Chèng-kui ti̍t-kau
- Chèng-kui ti̍t-kau ki-té
- Gram–Schmidt hong-hoat
- Ti̍t-kau pó͘ khong-kan
|
---|
| Hâng-lia̍t Sòaⁿ-sèng siá-siōng | Ián-sǹg |
- Sêng-hoat
- Choán-tì
- Kiōng-tam choán-tì
- Ge̍k hâng-lia̍t
- Sarrus hong-hoat
- Ki-pún piàn-hêng
- Tùi-kak-hòa
- Hun-kái
- LU
- QR
- Cholesky
- Schur
- Te̍k-ì-ta̍t
- Kò͘-iú-ta̍t
|
---|
| Siōng-sò͘ |
- Hâng-lia̍t-sek
- Jiah
- Kai-sò͘
- Kò͘-iú-ta̍t
- Kò͘-iú hâng-lia̍t-sek
- Chòe-sió to-hāng-sek
- Put-piàn in-chú
- sè-hâng-lia̍t-sek
|
---|
| Lūi-pia̍t | |
---|
|
---|
| Hâng-lia̍t-sek |
- Laplace tián-khui
- Î-in-chú hâng-lia̍t
- Vandermonde hâng-lia̍t-sek
- Chiong-kiat-sek
- Cauchy-Binet kong-sek
|
---|
| To-goân sòaⁿ-sèng tāi-sò͘ |
- Chhe-chek
- Gōa-chek
- Kronecker chek
- Ti̍t-chek
- Gōa tāi-sò͘
- Tùi-thīn tāi-sò͘
- Tiuⁿ-liōng tāi-sò͘
|
---|
| Hâng-lia̍t-sek hâm-sò͘ |
- Hâng-lia̍t ê chí-sò͘
- Hâng-lia̍t ê tùi-sò͘
- Hâng-lia̍t ê pêng-hong-kin
|
---|
| Kî-thaⁿ |
- Sûn-liōng
- Cayley-Hamilton tēng-lí
- Perron–Frobenius tēng-lí
- Schur pó͘ hâng-lia̍t
- Sylvester koàn-sèng tēng-lí
|
---|
| |
|