指數分配
概率密度函數
累積分布函數
参数
λ
>
0
{\displaystyle \lambda >0\,}
率 值域
x
∈
[
0
;
∞
)
{\displaystyle x\in [0;\infty )\!}
概率密度函数
λ
e
−
λ
x
{\displaystyle \,\lambda e^{-\lambda x}
累積分布函數
1
−
e
−
λ
x
{\displaystyle 1-e^{-\lambda x}
期望值
λ
−
1
{\displaystyle \lambda ^{-1}\,}
中位數
ln
(
2
)
/
λ
{\displaystyle \ln(2)/\lambda \,}
眾數
0
{\displaystyle 0\,}
方差
λ
−
2
{\displaystyle \lambda ^{-2}\,}
偏度
2
{\displaystyle 2\,}
峰度
6
{\displaystyle 6\,}
熵
1
−
ln
(
λ
)
{\displaystyle 1-\ln(\lambda )\,}
矩生成函数
(
1
−
t
λ
)
−
1
{\displaystyle \left(1-{\frac {t}{\lambda }\right)^{-1}\,}
特徵函数
(
1
−
i
t
λ
)
−
1
{\displaystyle \left(1-{\frac {it}{\lambda }\right)^{-1}\,}
在機率論 和統計學 中,指數分布 (英語:Exponential distribution )是一種連續機率分佈 。指數分布可以用来建模平均发生率恒定、连续、独立的事件發生的間隔,比如旅客進入機場的時間間隔、電話打進客服中心的時間間隔、中文維基百科 新條目出現的時間間隔、機器的壽命等。
記號
指數分布即形狀母數 α為1的伽瑪分布 。
若隨機變數
X
{\displaystyle X}
服从母數為
λ
{\displaystyle \lambda }
或
β
{\displaystyle \beta }
的指数分布,則記作
X
∼
Exp
(
λ
)
{\displaystyle X\sim {\text{Exp}(\lambda )}
或
X
∼
Exp
(
β
)
{\displaystyle X\sim {\text{Exp}(\beta )}
兩者意義相同,只是
λ
{\displaystyle \lambda }
與
β
{\displaystyle \beta }
互為倒數關係。只要將以下式子做
λ
=
1
β
{\displaystyle {\color {Red}\lambda ={\frac {1}{\beta }
的替換即可,即,指數分布之機率密度函數 為:
f
(
x
;
λ
)
=
{
λ
e
−
λ
x
x
≥
0
,
0
,
x
<
0.
{\displaystyle f(x;{\color {Red}\lambda })=\left\{\begin{matrix}{\color {Red}\lambda }e^{-{\color {Red}\lambda }x}&x\geq 0,\\0&,\;x<0.\end{matrix}\right.}
或
f
(
x
;
β
)
=
{
1
β
e
−
1
β
x
x
≥
0
,
0
,
x
<
0.
{\displaystyle f(x;{\color {Red}\beta })=\left\{\begin{matrix}{\color {Red}{\frac {1}{\beta }e^{-{\color {Red}{\frac {1}{\beta }x}&x\geq 0,\\0&,\;x<0.\end{matrix}\right.}
累积分布函数 為:
F
(
x
;
λ
)
=
{
1
−
e
−
λ
x
,
x
≥
0
,
0
,
x
<
0.
{\displaystyle F(x;{\color {Red}\lambda })=\left\{\begin{matrix}1-e^{-\color {Red}{\lambda }x}&,\;x\geq 0,\\0&,\;x<0.\end{matrix}\right.}
或
F
(
x
;
β
)
=
{
1
−
e
−
1
β
x
,
x
≥
0
,
0
,
x
<
0.
{\displaystyle F(x;{\color {Red}\beta })=\left\{\begin{matrix}1-e^{-{\color {Red}{\frac {1}{\beta }x}&,\;x\geq 0,\\0&,\;x<0.\end{matrix}\right.}
其中
λ
>
0
{\displaystyle \lambda >0}
是分布的母數,即每单位时间发生该事件的次数;
β
{\displaystyle \beta }
為比例母數,即該事件在每單位時間內的發生率。兩者常被称为率参数(rate parameter)。指数分布的区间是[0,∞)。
特性
期望值与變異數
随机变量 X (X 的母數 為λ或β) 的期望值 是:
E
(
X
)
=
1
λ
=
β
{\displaystyle \mathbf {E} (X)={\frac {1}{\color {Red}{\lambda }={\color {Red}\beta }
例如:如果你平均每个小时接到2次电话,那么你预期等待每一次电话的时间是半个小时。
X 的方差 是:
V
a
r
(
X
)
=
1
λ
2
=
β
2
{\displaystyle \mathbf {Var} (X)={\frac {1}{\color {Red}{\lambda ^{2}={\color {Red}\beta ^{2}
X 的偏態系数 是:
V [X] = 1
无记忆性
指数函数的一个重要特征是无记忆性(Memoryless Property,又稱遺失記憶性 )。这表示如果一个随机变量 呈指数分布,它的条件概率遵循:
P
(
T
>
s
+
t
|
T
>
t
)
=
P
(
T
>
s
)
for all
s
,
t
≥
0.
{\displaystyle P(T>s+t\;|\;T>t)=P(T>s)\;\;{\hbox{for all}\ s,t\geq 0.}
与泊松过程的关系
泊松過程 是一种重要的随机过程。泊松過程中,第k次随机事件与第k+1次随机事件出现的时间间隔服从指数分布。而根据泊松過程的定义,长度为t的时间段内没有随机事件出现的概率等于
e
−
λ
t
(
λ
t
)
0
0
!
=
e
−
λ
t
{\displaystyle {\frac {e^{-\lambda t}(\lambda t)^{0}{0!}=e^{-\lambda t}
,
长度为t的时间段内随机事件发生一次的概率等于
e
−
λ
t
(
λ
t
)
1
1
!
=
e
−
λ
t
λ
t
{\displaystyle {\frac {e^{-\lambda t}(\lambda t)^{1}{1!}=e^{-\lambda t}\lambda t}
,
所以第k次随机事件之后长度为t的时间段内,第k+n次 (n=1, 2, 3,...)随机事件出现的概率等于
1
−
e
−
λ
t
{\displaystyle 1-e^{-\lambda t}
。这是指数分布。这还表明了泊松过程的无记忆性。
四分位数
率参数λ的四分位数 函数(Quartile function)是:
F
−
1
(
p
;
λ
)
=
−
ln
(
1
−
p
)
λ
,
0
≤
p
<
1
{\displaystyle F^{-1}(p;\lambda )={\frac {-\ln(1-p)}{\lambda },\qquad 0\leq p<1}
第一四分位数:
ln
(
4
/
3
)
/
λ
{\displaystyle \ln(4/3)/\lambda \,}
中位数 :
ln
(
2
)
/
λ
{\displaystyle \ln(2)/\lambda \,}
第三四分位数:
ln
(
4
)
/
λ
{\displaystyle \ln(4)/\lambda \,}
因此,四分位距 為ln(3)/λ 。
参数估计
最大概似法
给定独立同分布 样本x = (x 1 , ..., x n ),λ的似然函数 (Likelihood function)是:
L
(
λ
)
=
∏
i
=
1
n
λ
exp
(
−
λ
x
i
)
=
λ
n
exp
(
−
λ
∑
i
=
1
n
x
i
)
=
λ
n
exp
(
−
λ
n
x
¯
)
{\displaystyle L(\lambda )=\prod _{i=1}^{n}\lambda \,\exp(-\lambda x_{i})=\lambda ^{n}\,\exp \!\left(\!-\lambda \sum _{i=1}^{n}x_{i}\right)=\lambda ^{n}\exp \left(-\lambda n{\overline {x}\right)}
其中:
x
¯
=
1
n
∑
i
=
1
n
x
i
{\displaystyle {\overline {x}={1 \over n}\sum _{i=1}^{n}x_{i}
是样本期望値。
似然函数对数 的导数 是:
d
d
λ
ln
L
(
λ
)
=
d
d
λ
(
n
ln
(
λ
)
−
λ
n
x
¯
)
=
n
λ
−
n
x
¯
{
>
0
if
0
<
λ
<
1
/
x
¯
,
=
0
if
λ
=
1
/
x
¯
,
<
0
if
λ
>
1
/
x
¯
.
{\displaystyle {\frac {\mathrm {d} }{\mathrm {d} \lambda }\ln L(\lambda )={\frac {\mathrm {d} }{\mathrm {d} \lambda }\left(n\ln(\lambda )-\lambda n{\overline {x}\right)={n \over \lambda }-n{\overline {x}\ \left\{\begin{matrix}>0&{\mbox{if}\ 0<\lambda <1/{\overline {x},\\\\=0&{\mbox{if}\ \lambda =1/{\overline {x},\\\\<0&{\mbox{if}\ \lambda >1/{\overline {x}.\end{matrix}\right.}
参数λ的最大概似估計 (Maximum likelihood)值是:
λ
^
=
1
x
¯
{\displaystyle {\widehat {\lambda }={\frac {1}{\overline {x}
參見
参考文獻
Donald E. Knuth (1998). The Art of Computer Programming, volume 2: Seminumerical Algorithms, 3rd edn. Boston: Addison-Wesley. ISBN 0-201-89684-2 . pp. 133
Luc Devroye (1986). Non-Uniform Random Variate Generation. New York: Springer-Verlag. ISBN 0-387-96305-7 . pp. 392–401
外部連結
離散單變量
有限支集 無限支集
beta negative binomial
Borel
Conway–Maxwell–Poisson
discrete phase-type
Delaporte
extended negative binomial
Flory–Schulz
Gauss–Kuzmin
幾何分佈
对数分布
mixed Poisson
负二项分布
Panjer
parabolic fractal
卜瓦松分布
Skellam
Yule–Simon
zeta
連續單變量
混合單變量
联合分布
Discrete:
Ewens
multinomial
Continuous:
狄利克雷分布
multivariate Laplace
多元正态分布
multivariate stable
multivariate t
normal-gamma
随机矩阵
LKJ
矩阵正态分布
matrix t
matrix gamma
威沙特分佈
定向統計
循環單變量定向統計
圆均匀分布
univariate von Mises
wrapped normal
wrapped Cauchy
wrapped exponential
wrapped asymmetric Laplace
wrapped Lévy
球形雙變量
Kent
環形雙變量
bivariate von Mises
多變量
von Mises–Fisher
Bingham
退化分布 和奇異分佈 其它
Circular
复合泊松分布
elliptical
exponential
natural exponential
location–scale
Maximum entropy
Mixture
Pearson
Tweedie
Wrapped