F-分布
F分布
概率密度函數
累積分布函數
参数
d
1
>
0
,
d
2
>
0
{\displaystyle d_{1}>0,\ d_{2}>0}
自由度 值域
x
∈
[
0
;
+
∞
)
{\displaystyle x\in [0;+\infty )\!}
概率密度函数
(
d
1
x
)
d
1
d
2
d
2
(
d
1
x
+
d
2
)
d
1
+
d
2
x
B
(
d
1
2
,
d
2
2
)
{\displaystyle {\frac {\sqrt {\frac {(d_{1}\,x)^{d_{1}\,\,d_{2}^{d_{2}{(d_{1}\,x+d_{2})^{d_{1}+d_{2}{x\,\mathrm {B} \!\left({\frac {d_{1}{2},{\frac {d_{2}{2}\right)}\!}
累積分布函數
I
d
1
x
d
1
x
+
d
2
(
d
1
/
2
,
d
2
/
2
)
{\displaystyle I_{\frac {d_{1}x}{d_{1}x+d_{2}(d_{1}/2,d_{2}/2)\!}
期望值
d
2
d
2
−
2
{\displaystyle {\frac {d_{2}{d_{2}-2}\!}
for
d
2
>
2
{\displaystyle d_{2}>2}
眾數
d
1
−
2
d
1
d
2
d
2
+
2
{\displaystyle {\frac {d_{1}-2}{d_{1}\;{\frac {d_{2}{d_{2}+2}\!}
for
d
1
>
2
{\displaystyle d_{1}>2}
方差
2
d
2
2
(
d
1
+
d
2
−
2
)
d
1
(
d
2
−
2
)
2
(
d
2
−
4
)
{\displaystyle {\frac {2\,d_{2}^{2}\,(d_{1}+d_{2}-2)}{d_{1}(d_{2}-2)^{2}(d_{2}-4)}\!}
for
d
2
>
4
{\displaystyle d_{2}>4}
偏度
(
2
d
1
+
d
2
−
2
)
8
(
d
2
−
4
)
(
d
2
−
6
)
d
1
(
d
1
+
d
2
−
2
)
{\displaystyle {\frac {(2d_{1}+d_{2}-2){\sqrt {8(d_{2}-4)}{(d_{2}-6){\sqrt {d_{1}(d_{1}+d_{2}-2)}\!}
for
d
2
>
6
{\displaystyle d_{2}>6}
峰度
见下文
在概率论 和统计学 裡,F -分布 (F -distribution)是一种连续概率分布 ,[ 1] [ 2] [ 3] [ 4] 被广泛应用于似然比率检验,特别是ANOVA 中。
定义
如果随机变量 X 有参数为 d 1 和 d 2 的 F -分布,我们写作 X ~ F(d 1 , d 2 )。那么对于实数 x ≥ 0,X 的概率密度函数 (pdf)是
f
(
x
;
d
1
,
d
2
)
=
(
d
1
x
)
d
1
d
2
d
2
(
d
1
x
+
d
2
)
d
1
+
d
2
x
B
(
d
1
2
,
d
2
2
)
=
1
B
(
d
1
2
,
d
2
2
)
(
d
1
d
2
)
d
1
2
x
d
1
2
−
1
(
1
+
d
1
d
2
x
)
−
d
1
+
d
2
2
{\displaystyle {\begin{aligned}f(x;d_{1},d_{2})&={\frac {\sqrt {\frac {(d_{1}\,x)^{d_{1}\,\,d_{2}^{d_{2}{(d_{1}\,x+d_{2})^{d_{1}+d_{2}{x\,\mathrm {B} \!\left({\frac {d_{1}{2},{\frac {d_{2}{2}\right)}\\&={\frac {1}{\mathrm {B} \!\left({\frac {d_{1}{2},{\frac {d_{2}{2}\right)}\left({\frac {d_{1}{d_{2}\right)^{\frac {d_{1}{2}x^{\frac {d_{1}{2}-1}\left(1+{\frac {d_{1}{d_{2}\,x\right)^{-{\frac {d_{1}+d_{2}{2}\end{aligned}
这里
B
{\displaystyle \mathrm {B} }
是B函数 。在很多应用中,参数 d 1 和 d 2 是正整数 ,但对于这些参数为正实数时也有定义。
累积分布函数 为
F
(
x
;
d
1
,
d
2
)
=
I
d
1
x
d
1
x
+
d
2
(
d
1
2
,
d
2
2
)
,
{\displaystyle F(x;d_{1},d_{2})=I_{\frac {d_{1}x}{d_{1}x+d_{2}\left({\tfrac {d_{1}{2},{\tfrac {d_{2}{2}\right),}
其中 I 是正则不完全贝塔函数 。
右边表格中已给出期望值 、方差 和偏度 ;对于
d
2
>
8
{\displaystyle d_{2}>8}
,峰度 为:
γ
2
=
12
d
1
(
5
d
2
−
22
)
(
d
1
+
d
2
−
2
)
+
(
d
2
−
4
)
(
d
2
−
2
)
2
d
1
(
d
2
−
6
)
(
d
2
−
8
)
(
d
1
+
d
2
−
2
)
{\displaystyle \gamma _{2}=12{\frac {d_{1}(5d_{2}-22)(d_{1}+d_{2}-2)+(d_{2}-4)(d_{2}-2)^{2}{d_{1}(d_{2}-6)(d_{2}-8)(d_{1}+d_{2}-2)}
.
特征
一个F -分布的随机变量 是两个卡方分佈 变量除以自由度的比率:
U
1
/
d
1
U
2
/
d
2
=
U
1
/
U
2
d
1
/
d
2
{\displaystyle {\frac {U_{1}/d_{1}{U_{2}/d_{2}={\frac {U_{1}/U_{2}{d_{1}/d_{2}
其中:
U 1 和U 2 呈卡方分佈 ,它们的自由度 (degree of freedom)分别是d 1 和d 2 。
U 1 和U 2 是相互独立的。
參見
参考文献
^ Johnson, Norman Lloyd; Samuel Kotz; N. Balakrishnan. Continuous Univariate Distributions, Volume 2 (Second Edition, Section 27). Wiley. 1995. ISBN 0-471-58494-0 .
^ Abramowitz, Milton; Stegun, Irene Ann (编). Chapter 26 . Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. Applied Mathematics Series 55 Ninth reprint with additional corrections of tenth original printing with corrections (December 1972); first. Washington D.C.; New York: United States Department of Commerce, National Bureau of Standards; Dover Publications. 1983: 946. ISBN 978-0-486-61272-0 . LCCN 64-60036 . MR 0167642 . .
^ NIST (2006). Engineering Statistics Handbook – F Distribution (页面存档备份 ,存于互联网档案馆 )
^ Mood, Alexander; Franklin A. Graybill; Duane C. Boes. Introduction to the Theory of Statistics (Third Edition, pp. 246–249). McGraw-Hill. 1974. ISBN 0-07-042864-6 .
離散單變量
有限支集 無限支集
beta negative binomial
Borel
Conway–Maxwell–Poisson
discrete phase-type
Delaporte
extended negative binomial
Flory–Schulz
Gauss–Kuzmin
幾何分佈
对数分布
mixed Poisson
负二项分布
Panjer
parabolic fractal
卜瓦松分布
Skellam
Yule–Simon
zeta
連續單變量
混合單變量
联合分布
Discrete:
Ewens
multinomial
Continuous:
狄利克雷分布
multivariate Laplace
多元正态分布
multivariate stable
multivariate t
normal-gamma
随机矩阵
LKJ
矩阵正态分布
matrix t
matrix gamma
威沙特分佈
定向統計
循環單變量定向統計
圆均匀分布
univariate von Mises
wrapped normal
wrapped Cauchy
wrapped exponential
wrapped asymmetric Laplace
wrapped Lévy
球形雙變量
Kent
環形雙變量
bivariate von Mises
多變量
von Mises–Fisher
Bingham
退化分布 和奇異分佈 其它
Circular
复合泊松分布
elliptical
exponential
natural exponential
location–scale
Maximum entropy
Mixture
Pearson
Tweedie
Wrapped
The article is a derivative under the Creative Commons Attribution-ShareAlike License .
A link to the original article can be found here and attribution parties here
By using this site, you agree to the Terms of Use . Gpedia ® is a registered trademark of the Cyberajah Pty Ltd