Gamma
概率密度函數  |
累積分布函數  |
参数 |
形状参数 (实数)
尺度参数 (实数) |
---|
值域 |
 |
---|
概率密度函数 |
 |
---|
累積分布函數 |
 |
---|
期望值 |
 |
---|
中位數 |
no simple closed form |
---|
眾數 |
for  |
---|
方差 |
 |
---|
偏度 |
 |
---|
峰度 |
 |
---|
熵 |

 |
---|
矩生成函数 |
for  |
---|
特徵函数 |
 |
---|
伽玛分布(英語:Gamma distribution)是統計學的一種連續機率分布。伽玛分佈中的母數α,稱為形狀参数,β稱為尺度参数。
實驗定義與觀念
假设X1, X2, ... Xn 为连续发生事件的等候时间,且这n次等候时间为独立的,那么这n次等候时间之和Y (Y=X1+X2+...+Xn)服从伽玛分布,即 Y~Gamma(α , β),亦可記作Y~Gamma(α , λ),其中α = n,而 β 與λ互為倒數關係,λ 表單位時間內事件的發生率。
指数分布為α = 1的伽瑪分布。
記號
有兩種表記方法:
或
兩者所表達意義相同,只要將以下式子做
的替換即可,即,其機率密度函數為:
,x > 0
其中Gamma函数之特徵為:
特性
母函數、期望值、變異數

![{\displaystyle K_{x}\left(t\right)=\ln M_{x}\left(t\right)=\alpha \left[\ln \lambda -\ln \left(\lambda -t\right)\right]}](https://wikimedia.org/api/rest_v1/media/math/render/svg/3f3c9932ee15d43b2588004f15ca6294b05b4462)


Gamma的可加性
當兩隨機變數服從Gamma分布,且相互獨立,且母數(
或
)相同時,Gamma分布具有可加性。

外部連結
|
---|
離散單變量 | 有限支集 | |
---|
無限支集 |
- beta negative binomial
- Borel
- Conway–Maxwell–Poisson
- discrete phase-type
- Delaporte
- extended negative binomial
- Flory–Schulz
- Gauss–Kuzmin
- 幾何分佈
- 对数分布
- mixed Poisson
- 负二项分布
- Panjer
- parabolic fractal
- 卜瓦松分布
- Skellam
- Yule–Simon
- zeta
|
---|
| |
---|
連續單變量 | |
---|
混合單變量 | |
---|
联合分布 |
- Discrete:
- Ewens
- multinomial
- Continuous:
- 狄利克雷分布
- multivariate Laplace
- 多元正态分布
- multivariate stable
- multivariate t
- normal-gamma
- 随机矩阵
- LKJ
- 矩阵正态分布
- matrix t
- matrix gamma
- 威沙特分佈
|
---|
定向統計 |
- 循環單變量定向統計
- 圆均匀分布
- univariate von Mises
- wrapped normal
- wrapped Cauchy
- wrapped exponential
- wrapped asymmetric Laplace
- wrapped Lévy
- 球形雙變量
- Kent
- 環形雙變量
- bivariate von Mises
- 多變量
- von Mises–Fisher
- Bingham
|
---|
退化分布和奇異分佈 | |
---|
其它 |
- Circular
- 复合泊松分布
- elliptical
- exponential
- natural exponential
- location–scale
- Maximum entropy
- Mixture
- Pearson
- Tweedie
- Wrapped
|
---|
|